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Abstract Event-driven particle dynamics is a fast and pre-
cise method to simulate particulate systems of all scales. In
this work it is demonstrated that, despite the high accuracy of
the method, the finite machine precision leads to simulations
entering invalid states where the dynamics are undefined. A
general event-detection algorithm is proposed which handles
these situations in a stable and efficient manner. This requires
a definition of the dynamics of invalid states and leads to
improved algorithms for event-detection in hard-sphere sys-
tems.

Keywords DEM · Event-driven · Molecular dynamics ·
Hard sphere · Collision detection

1 Introduction

Event-diven particle-dynamics (EDPD) is the oldest particle
simulation technique [1] and has found application in a wide
range of fields, from predicting vapor-liquid equilibria [7] to
the design of granular vibration dampers [3]. Although typi-
cally used to simulate simple particle models such as the hard
sphere, the EDPD technique remains a general approach to
particle simulations as potentials can be discretized to accu-
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rately approximate more conventional model systems, such
as Lennard-Jonesium [6], or directly fit to physical data [37].
Introducing the coefficient of restitution, EDPD algorithms
can also be used to simulate systems of dissipatively inter-
acting particles, such as granular flows.

Hard-sphere EDPD algorithms in particular are often
much more efficient (sometimes by orders of magnitude) than
“soft” models which must solve Newton’s equation of motion
using time-stepping numerical integration techniques [16].
Disregarding machine precision, EDPD algorithms solve the
dynamics of discontinuous-potential models (such as hard
spheres) analytically and do not suffer from errors due to the
finite time step always used in numerical quadrature [16].

Despite these advantages, there remain numerical diffi-
culties in the implementation of the EDPD algorithm due to
the finite precision of floating point calculations originating
from the machine precision. Small numerical errors in the
detection and processing of events can cause the simulation
to enter states where the dynamics is undefined. Interest-
ingly, this ambiguity in the dynamics of invalid states has
also led to some difficulties in theoretical treatments in the
past [11]. These difficulties are not discussed in the earli-
est EDPD implementations [1] as they are relatively rare
and frequently resolve themselves; however, for large sys-
tems and/or large simulation times, one must provide rules
to handle such situations. In addition, there are systems, such
as dissipative (granular) gases, which are prone to cluster-
ing [22] such that even for small numbers of particles these
finite-precision errors deteriorate until the simulation must
be halted. Modified algorithms have been proposed to com-
bat these difficulties but current solutions are complex and
fail in certain cases [29,32] or modify the system dynamics
in an undesired way [8,19].

In this work the difficulties of event-detection in EDPD
simulations are outlined and a general algorithm for stable
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event-detection is proposed. In Sect. 2, the basic event-driven
algorithm is outlined for the hard-sphere model. The ori-
gin of invalid states is then introduced in Sect. 3, before an
improved version of the event-detection algorithm is pre-
sented in Sect. 4. Finally, in Sect. 5, a more complex example
of a bouncing ball is used to illustrate that the dynamics of
invalid states must be defined, and demonstrates the extension
of the stable algorithm for hard spheres to fixed boundaries.

2 Basic event-driven algorithm for identical hard
spheres

Considering only conservative pairwise interactions of pairs
of particles i and j , located at ri and r j respectively, summing
up the total force, Fi , acting on a particle i yields

Fi =
N∑

j �=i

Fi j = −
N∑

j �=i

∇φ(ri j ) ; ri j ≡ ri − r j (1)

where the sum is over all N particles in the system, excluding
self interactions and φ is the interaction energy. In traditional
time-stepping simulations, the total force on each particle is
inserted into Newton’s equation of motion and numerically
integrated to determine all particle positions and velocities
at later times.

In contrast, discrete potentials preclude the use of numer-
ical quadrature to solve Newton’s equation of motion. For
example, the fundamental property of hard-sphere particles
is that they cannot deform one another, that is, their interac-
tion energy reads

φHS (
ri j

) =
{
∞ if

∣∣ri j
∣∣ < σ

0 if
∣∣ri j

∣∣ ≥ σ
(2)

where σ is their collision diameter. Consequently, the parti-
cles move on ballistic trajectories except when two particles
reach the distance σ . The divergence of φHS(σ ) implies that
at this point, there is an infinite repelling force which in turn
implies that the duration of the interaction approaches zero,
that is, at this point the velocities alter instantaneously. Per-
forming a momentum and energy balance over two colliding
hard spheres [29] yields the collision rule for the evolution
of the particle velocity, vi :

v ′i = vi − 2m j

mi + m j

(
r̂i j · vi j

)
r̂i j ;

vi j ≡ vi − v j ; r̂i j ≡ ri j∣∣ri j
∣∣ (3)

where the primes denote post-collision values.
From here follows the main idea of EDPD: instead of

numerically integrating Newton’s equation of motion, EDPD
maps the dynamics of the many-particle system to a sequence
of instantaneous pairwise interactions. The handling of these

two-particle interactions relies on pre-computed collision
operators, e.g. Eq. (3). Thus, the EDPD algorithm for hard
spheres can be outlined as follows:

1. The simulation is started with certain initial conditions for
the positions and velocities of the particles. Obviously,
due to Eq. (2), any legal initial state requires that the par-
ticles must not overlap one another.

2. Each possible pairing of particles is tested to determine
if and when a collision is encountered, and the results
are used to construct a list of all possible future events.
This list is then sorted to determine the earliest event,
which is the only event in the list which is guaranteed to
occur. If a particle has multiple events occuring at the same
instant, an ambigutity in the event order is introduced;
however, it is often implicitly assumed that the execution
order in these cases is unimportant and these effects are
not discussed here.

3. The particle positions are propagated along ballistic tra-
jectories until the time of the earliest event.

4. The velocities of the two colliding particles are updated
according to the collision rule, Eq. (3).

5. Any events in the future event list which involve either of
the colliding particles are updated and the list is re-sorted
to determine the next event to be processed.

6. Check for conditions to terminate the simulation, e.g. the
total real time or number of events processed.

7. Continue with step 3.

In contrast to ordinary time-stepping MD algorithms, EDPD
progresses irregularly in time. It jumps from one event to
the next and, thus, is event-driven. The basic algorithm out-
lined above contains the basic ingredients of an EDPD algo-
rithm, albeit it would be unstable due to precision errors
and of time complexity O (

N 2
)

per event processed. Indeed,
there is a range of methods used to accelerate these calcu-
lations [18,31], including the use of neighbor lists [1], the
delayed states algorithm [17], calendar priority queues [28],
and other optimizations [20,34,35] which reduce the calcu-
lation costs to constant time (O (1)) per event. Although the
cost of simulating each event is now independent of system
size it should be noted that, for equilibrium systems, the num-
ber of events to be processed per unit of simulation time still
scales as O(N ). Nevertheless, common to all algorithms is
that the primary cost of simulation arises from the detection
of events.

While the algorithmic challenge of EDPD is the book-
keeping of the list of future events, the numerical challenge
is the computation of the times of the events and it is the
latter which is the subject of this paper. We will show that
naïve algorithms will result in invalid states and eventually
failure of the algorithm due to unavoidable numerical errors
resulting from the finite machine precision.
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These problems will be explored using the prototypical
discrete potential, the hard sphere. We wish to point out that
EDPD of hard spheres is not restricted to conservative inter-
actions: Dissipative collisions may be characterized by the
coefficient of normal restitution defined as the ratio of the
post-collisional relative normal velocity of the particles and
the corresponding pre-collisional value,

ε ≡ −v ′i j · ri j

vi j · ri j
. (4)

In general, ε is a function of the impact velocity and mate-
rial properties. It may be analytically obtained by solving
Newton’s equation of motion for an isolated pair of colliding
particles with the assumption of a certain interaction force,
e.g. [25,33]. Alternatively, ε may be obtained experimentally,
e.g. [24]. The corresponding collision rule is obtained from
the conservation of momentum and angular momentum and
from the loss of kinetic energy quantified by the coefficient
of restitution:

v ′i = vi − m j

mi + m j
(1+ ε)

(
r̂i j · vi j

)
r̂i j . (5)

From the point of view of physics, the main difference
between integrating Newton’s equations of motion using a
time-stepping algorithm for a standard model, such as the
Hertz potential, and a EDPD simulation using hard spheres
is the duration of collisions. This difference has some sub-
tle consequences leading to limitations of the applicability
of the hard-sphere models [26] which may be partially over-
come [27].

3 Event calculation errors

During the population and updates of the future event list,
pairs of particles must be tested to determine if and when they
collide. For identical hard spheres, the equations of motion
must be solved to find if the particle pair approaches to a
distance equal to the interaction diameter, σ . Assuming that
the particles are under identical acceleration by an external
field such as gravity, this detection of events becomes a search
for the time intervals Δt which satisfy
∣∣ri j (t +Δt)

∣∣ = ∣∣ri j (t)+Δt vi j (t)
∣∣ = σ . (6)

Squaring of this expression simplifies it to a quadratic equa-
tion in Δt

Δt2 v 2
i j + 2 Δt vi j · ri j + r 2

i j − σ 2 = 0 , (7)

where all variables are evaluated at the current time t . If this
quadratic equation does not have a real root, the particles
do not come into contact, otherwise there are two roots and
the earliest time root corresponds to the collision. Figure 1

(a) (b) (c)

Fig. 1 The three classes of trajectories for a pair of hard-sphere par-
ticles. a Colliding, b passing, and c glancing. The dotted line repre-
sents the trajectory of particle i relative to the center of particle j .
The dashed line indicates the border of the invalid state/infinite energy
region, shaded in gray. Roots of Eq. (7), corresponding to inter-particle
separations of σ , are marked with circles. A filled circle indicates the
impacting root of the overlap function f to be introduced in Eq. (8),
and also marks the start of a section of the trajectory which satisfies
the stable algorithms conditions for an interaction (solid line). Roots of
the time derivative of the overlap function (Eq. (9)) are marked with
triangles

Fig. 2 An exaggerated illustration of the effects of finite precision on
the execution of events. Ideally, the particles are in contact at the time
of the collision; however, due to the limited precision the particles are
either separated by a small gap or end up in a slightly overlapped state

sketches the three classes of trajectories corresponding to
zero, two, and one (degenerated) solution of Eq. (7).

When computing the roots of Eq. (7), small numeri-
cal errors accumulate during the calculation due to the
finite precision of floating point mathematics. Careful imple-
mentations can minimize these errors through algorithmic
improvements or through arbitrary precision floating-point
libraries [14] but complete elimination would require exact
real arithmetic [23] which is relatively computationally
expensive. These errors alter the prediction of the positions
of the colliding particles at the time of impact, which causes
the particles to either numerically overlap or stand a small
distance apart at the time of impact (see Fig. 2).

The overlapping case is problematic as the particles have
numerically entered the infinite energy hard-core. To illus-
trate the magnitude of these errors, simulations of N =
13 500 hard spheres under periodic boundary conditions were
performed and histograms of the measured impact distances,
collected over 109 collisions, are given in Fig. 3. The mean
and mode separation on impact correspond to the interaction
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Fig. 3 Histograms of the impact separations for a simulation of N =
13, 500 hard spheres under periodic boundary conditions, collected
over 109 collisions. Each bar represents a single floating point number,
marked at the top, and the range of continuous values that it represents
due to the finite precision. Data for different elasticities, ε, and densi-
ties ρ = N/V , where V is the primary image volume are presented as
seperate histograms. There is a precision change at zero due to a change
in the floating-point exponent when crossing

∣∣ri j
∣∣ = σ

diameter, σ , but it is clear that particle separations on impact
can fall on either side of this value. The overlapping states
are relatively minor and typically resolve themselves in elas-
tic systems as the particle pair is receding after the impact;
however, Fig. 3 clearly demonstrates that the infinite energy
core of the potential is numerically accessible and the mag-
nitude of these errors are significantly increased in inelastic
systems. The overlapped states may degenerate if one of the
overlapping particles interacts before the overlap is cleared,
effectively causing a three-body impact which is in direct
conflict with the physical model of instantaneous collisions
for hard spheres.

While errors resulting in
∣∣ri j

∣∣ � σ are uncritical for the
stability of the algorithm, the opposite case,

∣∣ri j
∣∣ � σ is fatal

since the computation of the next event corresponds to a col-
lision where vi j · r̂i j > 0. Execution of this collision approx-
imates entangled circular rings and this entanglement will
persist forever, unless it is resolved due to another numerical
error in a future collision. As shown in Fig. 3, this situa-
tion is not a rare event but concerns approximately half of
all collisions, therefore, any useful EDPD algorithm must
provide measures to cope with this situation. There are two
different approaches: a) avoid situations where

∣∣ri j
∣∣ < σ ,

and b) admit such situations but provide methods to recover
from them. One method exploiting solution a) to prevent
overlaps from forming due to numerical errors is to retro-
spectively search along the pre-collision trajectory of collid-
ing particle pairs for a collision state which is not overlap-
ping [2]. Unfortunately, this iterative approach is expensive
and will limit the computational speed of EDPD. A more effi-
cient scheme to prevent overlaps by biasing the movement
of particles by (temporarily) modifying the particle diameter
so that detected interactions occur at a small distance from

Fig. 4 An illustration of two impacts leading to three overlapping par-
ticles. This situation is difficult to resolve using simple collision detec-
tion algorithms. All overlaps in this sketch are strongly exaggerated for
improved visibility

the invalid state is proposed by Pöschel and Schwager [29].
Unortunately, this approach does not exactly simulate the
desired system but a slightly different system following a
slightly different dynamics. It may also be shown that there
are cases where these approaches fail to prevent overlaps
forming [29].

Specific discussions on how to handle event detection for
overlapping particle pairs corresponding to solution b) are
common [2,3,9,13,15,21,32]; however, these approaches
often either implicitly disable interactions between over-
lapped pairs, admit significant overlaps to form before
attempting to correct them, or rewind simulation time in
an uncontrolled manner, all of which fail to resolve three-
body contacts/events. A one-dimensional illustration of a
sequence of impacts which leads to a three-body contact is
given in Fig. 4. Initially, two particles impact and overlap
due to numerical errors in the event calculation. This situ-
ation typically resolves quickly as the particles are reced-
ing from each other, but in rare cases a third particle may
impact the overlapping pair of particles before the overlap
is resolved. This leads to a three-body contact where there
are overlapping particles which are approaching each other.
Figure 5 presents measurements on the frequency of these
events in hard-sphere systems with different densities and
elasticities. In dilute elastic systems (ε = 1), these three-
body events are extremely rare (≈10−9 three-body events
per event processed) which may explain why they are not dis-
cussed in the literature as published simulations are rarely this
long. In inelastic systems, clustering effects [22] and partial
collapse events increase the frequency of three-body events
by three orders of magnitude, making it likely that several
will occur during a single simulation run. If these three-body
interactions cause overlapped particle pairs to approach, sim-
ple algorithmic implementations for hard-sphere event detec-
tion [1,16] will return negative values of Δt for overlapped
pairs. Execution of these events will cause the simulation
to perform an unchecked rewind, leading to other particle
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Fig. 5 The frequency of three-body collisions resulting in a doubly
overlapped particle in hard-sphere simulations as a function of the coef-
ficient of restitution, ε, and reduced density

pairs to overlap, particularly at high densities. It is clear that,
even for simple discrete potentials like hard spheres, a stable
simulation algorithm must account for these numerical errors
and their consequences, particularly for inelastic systems and
long simulation times.

4 Stable EDPD for hard-sphere systems

4.1 General approach

A general approach for devising stable event-detection algo-
rithms requires the introduction of an overlap function and
the concept of stabilizing interactions. Overlap functions
are common in studies on event-driven asymmetric-potential
systems [2], where they have also been called the overlap
potential [10] or the indicator function [38]. For a simple
hard-sphere system with zero relative acceleration, a suitable
overlap function, fHS, is defined via Eq. (7):

fHS(t +Δt) = Δt2 v 2
i j + 2 Δt vi j · ri j + r 2

i j − σ 2 (8)

where again all variables are evaluated at the current time t .
The overlap function is a function of time which character-
izes the relative position of particles moving along certain
trajectories with respect to overlap. Typically it is propor-
tional to the distance or squared distance between the closest
points on the surfaces of the two tested objects. The overlap
function is negative for particle pairs in an invalid state, and
positive or zero in all valid states. In this sense, it is a penalty
function for invalid states. By definition, the overlap func-
tion transforms the search for event times into a search for
the roots of the overlap function, f (t). In addition, the sign
of the overlap function can be used as a test if the particle
pair is in an invalid state. Crucially, these properties allow
the derivative of the overlap function to be used as a test if an
invalid state ( f (t) < 0) is either improving or stable in time
( ḟ (t) ≥ 0) or not ( ḟ (t) < 0). For the hard-sphere case, the

derivative is given by the following expression

ḟHS(t +Δt) = 2 Δt v 2
i j + 2 vi j · ri j . (9)

A stabilizing interaction is a collision that is performed
by the algorithm immediately after a preceding collision
to ensure that overlapping particles do not approach one
another. It is generated in response to a negative and decreas-
ing overlap function and prevents the overlap function decay-
ing any further.

Using the overlap function and the concept of stabilizing
interactions, a stable algorithm for hard-sphere systems can
be defined as an algorithm which ensures the overlap function
does not decrease for any particle pair in contact or in an
overlapping state:

When testing for collisions between a pair of hard spheres
at a time, t , consider the overlap function, fHS. A collision
occurs after the smallest non-negative time interval, Δt , that
satisfies the following condition:
(

fHS (t +Δt) ≤ 0
)

and
(

ḟHS (t +Δt) < 0
)

(10)

For glancing interactions (see Fig. 1c), corresponding to
degenerate roots of Eq. (8), no sign change in ḟHS occurs. The
definition of the stable algorithm will allow the particles to
come into contact but, without a sign change in the derivative,
no event will be scheduled and no impulse will be applied.
This is acceptable for models without friction/rotation but it
is a point of ambiguity in the implementation of models with
tangential forces. Here we recommend that glancing interac-
tions are also excluded from generating impulses in systems
with friction as there are no forces in the normal direction of
the contact.

4.2 Algorithmic implementation for hard-sphere systems

An implementation of a stable event detection algorithm for
hard-sphere collisions, in accordance with the definition in
the previous section, is presented in Algorithm 1. Unsurpris-
ingly, this algorithm is similar to previously published algo-
rithms [1,16,29] for detecting hard-sphere collisions; how-
ever, it differs by the addition of the second if-statement on
Line 1. Only the earliest root of the overlap function gener-
ates interactions, as only the earliest root of the overlap func-
tion has a decreasing overlap function (marked with a filled
circle in Fig. 1a). The calculation of this root suffers from
catastrophic cancellation [30] and so the alternate form of the
quadratic equation must be used, as suggested by Pöschel and
Schwager [29]. Algorithm 1 shows no predefined precision
threshold; hence it could be used directly with arbitrary [14]
or exact [23] precision libraries to reduce the number of stabi-
lizing collisions at the expense of more complicated dynamic
data structures and significantly longer computation times.

Figure 6 sketches how this stable algorithm would resolve
the interactions between the particles for the example system
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/*Ensure that the trajectory is before the minimum in f . */
if vi j · ri j ≥ 0 then return∞;1
/*Catch overlapped and approaching states. */
if r2

i j − σ 2 ≤ 0 then return t ;2
/*Catch misses (Fig. 1b) and glancing impacts (Fig. 1c). */

if
[
(vi j · ri j )

2 − v2
i j (r

2
i j − σ 2)

]
≤ 0 then return∞3

/*Calculate first root of f (see Fig. 1a). */
�t ←−4 (

r2
i j − σ 2

)
/
(
−vi j · ri j +

√
(vi j · ri j )2 − v2

i j (r
2
i j − σ 2)

)
;

return t +�t ;5

Algorithm 1: The stable EDPD algorithm for collision
detection between two hard spheres, i and j , with colli-
sion diameter σ as depicted in Fig. 1.

introduced in Sect. 3. The critical step is the stabilizing colli-
sion occurring between the lower two particles immediately
after the execution of the first event at time t2. It is this event
which ensures the system moves towards a valid state, as
shown in the last segment of Fig. 6. At no point are the over-
laps, introduced by numerical error, allowed to increase in
time during the free motion of the system. Thus, the stable
algorithm proposed here handles three-body events by ensur-
ing the overlap function never deteriorates.

Although the stable algorithm defines the dynamics for
three-body interactions, it should not be used as a physi-
cal model for these effects. It only provides a stable defin-
ition of the dynamics for rare cases where multiple events
occur at the same time (due to numerical errors). In systems
where three-body collisions or persistent contacts are com-
mon, an appropriate model must be used. This model may
also be event-driven (e.g., stepped potentials [36]) but this
again requires the general approach outlined here to ensure
that the simulation is stable with respect to numerical errors.

Fig. 6 An illustration of two impacts leading to three overlapping parti-
cles. This situation is difficult to resolve; however, if a third “stabilizing”
collision is executed between the two initially-overlapping particles, all
particles will begin to move apart and the overlaps will clear after a short
time. Note that although the directions of the velocities of the lower two
particles are not changed by the stabilizing collision, the direction of
the relative velocity is

There are some cases where the execution of collisions
will not cause the overlap function to increase. Fortunately,
this behavior is often required to recover the correct dynam-
ics, as illustrated in the following section.

5 Advanced example: bouncing ball

A simple system to extend and test the applicability of the
stable algorithm introduced for hard spheres is the one-
dimensional system of an inelastic hard sphere falling under
the influence of gravity onto a hard plate, as described in
Fig. 7. The exact solution to this system is that the sphere
comes to rest after an infinite number of impacts in a finite
time [12], known as an inelastic collapse [22].

Attempting to numerically simulate the inelastic collapse
highlights the dramatic effect that small precision errors can
have. In the example explored here, the sphere is initialized
with zero velocity, v = 0, and positioned above the plate.
The time until the next impact, Δt , is calculated from the
largest positive root of the following overlap function:

fball→plate(t +Δt) = r +Δt v + Δt2

2 g − rplate − σ
2 (11)

where r and v are the position and velocity of the particle
of diameter σ at time t, rplate is the position of the hard
plate, and g is the gravitational acceleration. Approaching
this naively, the event time is given by the quadratic formula

Δt = − v+√v2−2 g [r−rplate−σ/2]
g . (12)

Although the current position of the sphere relative to the
plane is different for the calculation of the first and all later
impact times, there is no qualitative difference between these
two cases. For the calculation of the first impact time the
sphere is at a height of rplate + 1, while for all later impacts
the current height above the plate is σ/2+δ, where δ is a small
deviation due to numerical precision. Once the next impact
or “event” time is determined, the sphere is moved forward to
the time of the impact, its velocity is inelastically reflected,
v′ = −ε v. This process is then repeated until a sufficient
number of impacts has occurred or an error is encountered.
To explore the algorithm’s stability, the origin of the plate,

Fig. 7 An illustration of the position r of a ball of diameter σ = 1 as
it falls from a height r(t = 0) = rplate + 1 onto a plate located at rplate,
coming to rest after a time tfinal
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rplate, is uniformly sampled using 106 points from the range
[0, 1]. All other parameters of this test are presented in Fig. 7
and a coefficient of restitution of ε = 0.5 is used.

if n̂ · (ri − rwall) < 0 then n̂←− −n̂;1
g←− n̂ · g;
r ←− n̂ · (ri − rwall);2
v←− n̂ · vi ;3
if r ≤ σ/2 and v < 0 then return t ;4
if g = 0 then

if v ≥ 0 then return∞;5
return t − (r − σ/2) /v;

end6
�tmin ←− −v/g;7
if g < 0 then8

if v2 − 2 g(r − σ/2) < 0 then return t +�tmin9
�t1, �t2 ←−
QuadraticFormula

(
g�t2/2+ v�t + r − σ/2 = 0

)
;

return t +max(�t1, �t2);10

else11

if (v2 − 2 g(r − σ/2) < 0) or (�tmin < 0) then return∞12
�t1, �t2 ←−
QuadraticFormula

(
g�t2/2+ v�t + r − σ/2 = 0

)
;

return t +min(�t1, �t2);13

end14

Algorithm 2: The stable EDPD algorithm for collision
detection between a particle i , under acceleration g, with a
plane defined by a normal n̂ and point rwall . The Quadrat-
icFormula function returns the two real roots of the passed
quadratic using the stable formulas [30].

The simple coordinate transformation of varying rplate

should yield identical results; however, the finite precision of
the floating point math causes some difficulties: for ≈50 %
of the sampled values of rplate, the simulation must be halted
after only ≈30 events on average as the argument of the
square root in Eq. (12) becomes negative. This result arises
due to the sphere overlapping the wall after a collision by a
small amount ≈10−16 σ , exactly as in the hard-sphere sys-
tem. The argument of the square root then turns negative
once the velocity decays to the point where the peak of the
trajectory no longer escapes the small overlap with the wall.
A naive implementation may assume that if there are no real
roots to Eq. (11) the ball misses the plate; however, this is
clearly impossible in this system. This system demonstrates
that for inelastic systems with external forces, it is easy to
enter regions of undefined dynamics.

One possible treatment of this case is to halt the simulation
immediately; however, this will leave the system with a non-
zero velocity, a finite number of events in the trajectory, and
an overlap. Applying the stable algorithm defined in Sect. 4.1
to the overlap function in Eq. (11) provides a more satisfac-
tory resolution where the motion of the particle is continued
until it reaches its peak, where the velocity reduces to zero.
The algorithm also causes an infinite number of future events

to take place at zero time to prevent the overlap from increas-
ing again, which approximates the exact solution of inelastic
collapse to the precision of the calculations. To complete the
description of the stable algorithm in this case, an optimized
stable event-detection rule for a ball falling onto a plane in
three-dimensions is given in Algorithm 2.

6 Conclusions

A general and stable approach to event-detection in hard-
sphere systems has been proposed and sample implementa-
tions given in Algorithms 1 and 2. It defines the dynamics
of overlapping particles to minimize their effect on the tra-
jectory of the system. The algorithm relies on treating inter-
actions as stabilizing events for overlapping particle pairs
which are not improving with time.

Although this work has focussed on the hard-sphere sys-
tem, the general concept can be extended to the full range
of particle systems studied using event-driven techniques.
The extension to other assymmetric hard-core potentials is
straightforward provided an overlap function, f , with the
characteristics outlined in Sect. 4.1 and algorithms to deter-
mine its derivative and roots are available. These are available
in certain cases [38] but are non-trivial and must be imple-
mented numerically for some systems such as ellipsoidal par-
ticles [10].

Algorithm 2 demonstrates that the stable algorithm can be
applied to boundary interactions. An extension of the algo-
rithm to sphere-triangle interactions would allow the sim-
ulation of complex geometries in biological processes [5]
and the rapid design and import of boundaries from CAD
programs for the study of granular/solids processing sys-
tems [29]. The primary difficulty in this extension is the def-
inition of a suitable overlap function for collision detection
of composite objects.

To apply the technique to molecular systems, an extension
to softer stepped [36] or terraced potentials is required. Such
potentials, including the fundamental square-well potential,
require additional care in the definition of the overlap func-
tion as the invalid states of the model depend on the interac-
tion history of the particle pairs. The generalization to stepped
potentials, composite objects, and complex shapes will be
explored in future publications.

Reference implementations of all algorithms presented in
this paper are available in the open-source DynamO [4] sim-
ulation package.
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