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Abstract. Leibniz said "Naturam cognosci per analogiam": nature is understood by making analogies. This
statement describes a seminal epistemological principle. But one has to be aware of its limitations: quantum
mechanics for example at some point had to push Bohr•s model of the atom aside to make progress. This article
claims that the physics of granular packings has to move beyond the analogy of frictionless spheres, towards
local models of contact formation.

On earth solid assemblies of granular particles are by
far the most frequent phase of granular matter; we en-
counter granular packings everywhere from our kitchen
cabinet to civil engineering textbooks. In order to make
their handling, transport, and storage more e� cient, we
strive for a theory that predicts their mechanical proper-
ties, such as shear and bulk modulus or yield stress, start-
ing from a few state variables only. E� orts to develop such
a theory often start by modeling granular packings as an
assembly of frictionless spheres. This is a rather unsuit-
able starting point, for a number of reasons:

1. All granular particles are frictional.
2. Frictional particles have lower isostatic numbers

than frictionless particles.
3. Granular physics happens at volume fractions inac-

cessible to frictionless particles.
4. The volume fraction of soft particles can be changed

by compression. The volume fraction of frictional
particles is changed by changing their geometry.

5. Friction is one reason for history dependence in
granular systems.

6. Real world granular media are rarely spherical.
Shape adds complexity, e.g. to history dependence.

These six theses are also the outline for the follow-
ing sections. They are intended to provoke discussions
with a sizeable subgroup of the theoretically or numeri-
cally working scientists. Many experimentalists, applied
scientist, and engineers might “nd them, at least in part,
well-known. For simplicity, we will discuss in the follow-
ing only monodisperse spheres; except for section 6.

1 All granular particles are frictional.

Contrary to other particulate systems, such as foams or
emulsions, the constituents of granular media are solid
particles. This implies that their surface is geometrically
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Figure 1. Granular particles are rough particles.a) Scanning
Electron microscope (SEM) image of a factory-new soda-lime
glass bead. Image by courtesy of Karina Sand.b) SEM image
of the asperities on the surface of a new soda-lime glass bead.
c) After 30900 ”ow pulses in a water ”uidized bed, abrasion has
removed many of the surface asperities, resulting in a measurable
di� erence in packing properties. Images b) and c) are taken from
[1]. d) Histograms of surface roughness� of spherical particles
measured with a pro“lometer. The inset shows images of the
corresponding particles: (A) steel, (B) smooth acrylic, (C) PTFE,
(D) solvent-etched acrylic, (E) aluminum. Reproduced from [2].

rough, cf. “gure 1. If two particles get into contact, their
surface asperities will interlock, allowing for the existence
of tangential forces at the contact [3]. In the context of
granular packings, friction is su� ciently well described by
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a) b)

Figure 2. Friction increases the number of mechanically stable
con“gurations. In both images the center Styrofoam sphere is
only hold in place by the tangential forces at the contacts. Neither
arrangement would be possible with frictionless spheres. In fact,
under gravity the only mechanically stable con“guration of three
frictionless spheres is the perfect vertical alignment.

the Amontons-Coulomb law:

Ft ≤ µFn (1)

Fn andFt are the normal and tangential components of the
contact force, andµ is the static coe� cient of friction.

All granular media consist of frictional particles. Even
hydrogel spheres, which consist of up to 99.5% water,
have a friction coe� cient of≈ 0.01 [4, 5]. Moreover, while
it is possible to relax all tangential forces in a packing by
vibrating it at small amplitudes and high frequencies [6],
this will also compactify the packing to values falling into
the range of frictionless packings, thereby bypassing the
interesting granular physics as discussed in section 3.

In loose granular systems, such as e.g. granular gases,
the dynamics is more controlled by collisions than con-
tacts. Friction changes the way particles exchange mo-
mentum during collisions, but this seems to be often only a
higher order perturbation. Granular packings on the other
hand consist of enduring contacts, here the existence of
friction changes the physical picture completely:

First, the presence of tangential forces provides addi-
tional ways to satisfy the force and torque balance, which
will be discussed more quantitatively in section 2. This
leads to a massive increase of the number of mechanically
stable states; “gure 2 gives a simple example. Most gran-
ular packings studied in nature or experiment are looser
than the loosest packing that can be created without fric-
tion. The consequences of this will be discussed in sec-
tions 3 and 4.

Secondly, equation 1 is an inequality. For a given nor-
mal force at a contact it allows for a whole range in tangen-
tial force, as shown in “gure 3. The actual tangential force
will be a consequence of how the contact was formed. This
property is one of the reasons for the so called history-
dependence of granular matter, which will be discussed
further in section 5.

2 Frictional particles have lower isostatic
numbers than frictionless particles.

For any granular packing to be solid, the average number
of contacts a particle forms with its neighborsZ has to be
at least so large that all degrees of freedom (DOF) of the

Figure 3. The contact forces of a sphere in a wedge depend on
the preparation history. Each of the blue, red, or green pairs of
contact forces can balance the weight of the sphere (black arrow).
Which one is realized depends how the sphere was placed.

particle can be “xed. This minimal value, the so called
isostatic contact numberZiso, does depend on the dimen-
sion, shape, and most importantly friction of the particles
considered.

In the absence of friction, the rotational DOF of a per-
fect sphere are not relevant and only the three translational
DOF have to be blocked by the contacts. At each contact
there exists one normal force, which is however •sharedŽ
between the two particles which means that each contact
blocks on average only 0.5 DOF per particle. A packing of
frictionless spheres needs therefore to have at leastZ0

iso
= 6

contacts to be mechanically stable.
If we assumeµ = ∞, then each contact has 3 indepen-

dent force components (one normal and two tangential),
which “x 1.5 constraints per particle. On the other hand,
we now also have to consider the rotational DOF which
results in 6 DOF per particle. The isostatic number in the
presence of in“nite frictionZµ

iso
is therefore 4.

The inequalityZ0
iso

> Z
µ
iso

holds for all particle shapes
and in 2 and 3 dimensions [7]. One consequence is the
massive increase in the number of mechanically stable
packings of frictional particles, as discussed in the next
section. Another consequence is that granular packings
are typicallyhyperstatic i.e. their actual contact number
is larger than the minimum number needed for stability:
Z > Z

µ
iso

. From this follows that for a given spatial con-
“guration of particles, there exists a multitude of possible
force networks that will all satisfy the boundary conditions
of the system [8]. This property is intimately connected to
the history dependent behavior discussed in section 5.

There is a possible caveat regarding hyperstaticity. In
real granular mediaµ is “nite and the contacts might have
tangential forces which are exactly at the Coulomb thresh-
old, so called fully mobilized contacts. As this type of
contact will block only 1 DOF, the constraint counting ar-
gument has to be modi“ed and the e� ectiveZ

µ
iso

becomes
larger. However, a number of numerical studies [9…12]
have shown that the number of fully mobilized contacts is
not su� cient to regain isostaticity in any other situation
than when preparing a pressure free packing very slowly,
cf “gure 4. Which is also the recipe to approach the limit
of Random Loose Packing, the loosest packing possible
(discussed in section 3.2).
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Figure 4. Most granular packing are also hyperstatic when fully
mobilized contacts are taken into account. In disc packings both
Z (x-axis) and the number of fully mobilized contacts (y-axis)
changes with pressure andµ. However, only in the limit of van-
ishing pressure the system will approach isostaticity (solid line).
From [9].

3 Granular physics happens at volume
fractions inaccessible to frictionless
particles.

The consequences of the lower isostatic contact number of
frictional particles are best discussed using the the concept
of the con“gurational entropyS con f of the packings.S con f

was “rst introduced by Sam Edwards [13, 14], it is propor-
tional to the logarithm of the the number of mechanically
stable packing con“gurations that “t in a given volume and
support given boundary conditions. As we are interested
in the thermodynamic limit, we will discuss hereS con f as
a function of the global volume fraction� g. More specif-
ically, we are interested in a comparison of the upper and
lower bounds of� g between whichS con f becomes non-
zero for both frictional and frictionless systems.

The main results of this discussion are summarized in
“gure 5. But a word of caution is necessary: The� g values
of the upper and lower bounds are well supported by the
numerical and experimental work discussed below. But
the functional form ofS con f connecting these boundaries is
speculative and only supported by the heuristic arguments
given below.

Moreover, we are only interested in packings that ex-
ist in a thermodynamic sense. This excludes both pack-
ings crystallizing in FCC and HCP con“gurations at vol-
ume fractions above� g ≈ 0.65 [15…21]1 and the •tun-
neled crystalŽ packings at� g = 0.49 [22]. Neither of these
two con“gurations are extensive, i.e. their number does not
grow exponentially with the number of particles in the sys-
tem. Which means that in the thermodynamic limit their
entropy is zero.

1Readers familiar with equilibrated hard sphere systems might ex-
pect crystallization to occur in the range� g ≈ 0.494− 0.61. However,
these systems are driven by the entropy increase due to newly gained vi-
brational DOF. These DOF do not exist in athermal granular packings
where all particles are permanently in contact.
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Figure 5. A schematic how the con“gurational entropyS con f

of a sphere packing depends on the friction coe� cientµ and the
con“ning pressurep. The solid magenta line indicates the con“g-
urational entropy of an amorphous hard sphere gas i.e. a "pack-
ing" with non overlapping particles but no requirements on the
mechanical stability or number of contacts. The solid blue and
dashed cyan line represent packings with an approximate real
world value ofµ and the dotted red line corresponds to friction-
less particles. While the points withS con f = 0 are well supported
by experiments and simulations, the actual shape of the di� erent
curves is speculative.

An important upper bound onS con f is the con“gu-
rational entropyS HS of an amorphoushard sphere gas

where the only remaining condition for a valid con“gu-
ration is that particles do not overlap. Mechanical stabil-
ity and consequentiallyZ do not matter. In “gure 5 this
boundary is indicated by a solid magenta line. The pres-
sure of a hard sphere gas diverges at the so called Glass
Close Packing (GCP) point with� GCP ≈ 0.65 [20, 21, 23].
From which follows that the system runs out of non-
overlapping con“gurations andS HS goes to zero.

3.1 Frictionless sphere packings: 0.635< � g < 0.65

As S HS is an upper limit for any sphere packing,S con f of
a frictionless packing also needs to go to zero at� GCP ≈
0.65. For any smaller value of� g, S con f has to be smaller
thanS HS because we now additionally require an isostatic
number of contacts. In fact, the set of mechanically sta-
ble con“gurations should be of measure zero compared to
hard sphere gas: there are in“nite more possibilities of two
spheres to be not in contact compared to the one con“gu-
ration where they are. Luckily, we know thatS con f is still
extensive. This was shown for soft frictionless disk and
sphere systems of di� erent sizes by dividing the total ac-
cessible phase space volume by that of an average basin of
attraction [24, 25].

The total range ofS con f � 0 is shown as a red dotted
line in “gure 5. There is still some debate [7, 21, 26, 27] if
the onset of mechanical stability happens for frictionless
spheres at the so called Jamming point of� J ≈ 0.64 or
slightly below at� g ≈ 0.635. However, it is known that
the actual volume fraction of a packing of uncompressed
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frictionless spheres will depend on the preparation history.
For an extended discussion and further references see [28].

3.2 Frictional sphere packings: 0.55 < � g < 0.65

All mechanically stable con“guration of frictionless par-
ticles will stay valid if we allow for additional tangential
forces. ThereforeS con f of frictional packings will always
be larger than its frictionless counterpart. BecauseS HS is
also an upper bound to frictional systems, GCP will still
be the upper limit for uncompressed packings.

The lower boundary, commonly referred to as Random
Loose Packing (RLP), is however considerably lower than
in frictionless systems: As mentioned in the last section,
the inequalityZ0

iso
> Z

µ
iso

holds for all particle shapes and
in 2 and 3 dimensions. Moreover, asZ can be gener-
ically expected to decrease monotonically with decreas-
ing � g (i.e. larger average separation between particles),
the onset of mechanical stability will happen at a lower
volume fraction for frictional particles. The actual value
of � RLP does depend on pressure [29, 30] and the friction
coe� cient[2, 30]: the higherµ the smaller is� RLP. For the
experimentally common values ofµ ≈ 0.5 and vanishing
pressure,� RLP approaches 0.55 [2, 29…33].

In “gure 5 the solid blue and the dashed cyan line
representS con f of sphere packing with a “nite value of
µ and either zero or “nite con“ning pressurep. Besides
the points withS con f = 0, the shape of the curves is specu-
lative as there are few analytical or experimental results
on how S con f depends on� g. What we do understand
is that for any given value of� g, S con f will grow mono-
tonically with µ because allowing larger tangential forces
will never destabilize any existing packing, but allow for
new, additional con“gurations [34]. Moreover, we can use
the Widom insertion method in combination with experi-
mental or numerical packings to obtain an upper bound on
S con f [35]. However, a lower bound would be more help-
ful. Finally, under certain additional assumptions,S con f

can be computed from the volume ”uctuations of a re-
peatedly driven granular packing [36…38]. However, the
results obtained this way do not agree with each other.

Another way of assessing the shape ofS con f (� g) is to
consider experimental preparation protocols and to use the
additional assumption that the state the system will end up
in is the most likely one: the one with the highest value of
S con f under the given circumstances. For example, pack-
ing prepared by slow sedimentation in an almost density
matched ”uid (i.e. in the limitp → 0) will always end
up at � RLP [2, 29, 30]. Which indicates thatS con f has a
maximum at RLP forp = 0, cf. the blue line in “gure 5.

Without density matching (i.e. at a “nite static pres-
sure) and with an increased sedimentation speed (mean-
ing that the settling particles will transfer more momentum
on the already existing packing), the most likely packing
fraction moves up to� ≈ 0.6 [1]. The cyan dashed line
in “gure 5 represents the idea that this becomes the new
maximum inS con f . Which can be rationalized by assum-
ing that con“gurations with less excess contacts compared
to an isostatic packing are more likely to not posses a force

network capable of supporting the increased stress at the
boundaries.� ≈ 0.6 is incidentally also the value for the
onset of dilatancy, which is discussed in the next subsec-
tion.

Finally, getting the system to compactify to values of
� g above 0.6 requires repeated driving under con“ning
gravitational pressure, either by ”ow pulses [1] or mechan-
ical taps [39, 40]. This indicates that these states become
more and more unlikely which agrees with the idea that
S con f goes to zero for� g approaching GCP.

But the main point of this section is untouched by this
discussion of the shape ofS con f : The range of volume frac-
tions of mechanically stable packings isseven times larger

for frictional particles than for frictionless particles.

3.3 Dilatancy in frictional packings

Most of the interesting physics of granular packings hap-
pens at intermediate values of� g (i.e. between RLP and
GCP); these volume fractions are inaccessible to friction-
less packings. A good example is dilatancy: If a dense
granular packing is sheared (at a “nite hydrostatic pres-
sure), it will expand [41]. However, dilatancy does not oc-
cur in su� ciently loose samples; those will instead com-
pactify.

Now if dense packings expand during shear and loose
packings collapse, there will be an intermediate density,
usually termed Dilatancy Onset (DO) or critical state,
where the volume fraction� DO stays constant during shear.
Due to e� ects like shear banding the exact determination
of � DO is not straightforward, but most experiments point
to � DO ≈ 0.6 for frictional spheres at comparatively small
con“ning pressures [42…47]

Dilatancy is closely related to a phenomenon labeled
shear-jamming [48…50]. For� g > � DO one can start from
a hard sphere gas con“guration (experiments are done in
horizontal two-dimensional system and therefore e� ec-
tively in the absence of gravity), shear it at a constant
volume and arrive at a mechanically stable con“guration.
This protocol is indicated as a blue arrow in “gure 5. Be-
low � DO this is not possible.

One way of interpreting� DO is to see it as a "natural
attractor" for all sheared systems starting at other volume
fractions. This interpretation agrees well with the idea of
S con f being maximal at� DO ≈ 0.6.

4 The volume fraction of frictional
particles is controlled by their geometry.

The exact value of� g of a frictionless packing at zero pres-
sure does depend on the preparation history [20, 21, 28,
51]. However, the scaling laws of these packings are nor-
mally studied by preparing pressure free packings with a
given protocol and then increasing� g by compressing this
packing [7, 26].

With respect to the contact numberZ this amounts to a
study of the pair correlation function, or more precisely the
slope of the right shoulder of the “rst peak which describes

     

 
DOI: 10.1051/, 01008   (2017) 714001008140EPJ Web of Conferences epjconf/201

Powders & Grains 2017

4



the close-by particles which will form contacts when com-
pressed. This slope leads to an equation forZ:

Z(� g) = Z0
iso + c(� g − � iso)0.5 (2)

Here� iso is the volume fraction of the uncompressed, iso-
static packing and the constantc depends on the dimension
and polydispersity of the system. For compressed friction-
less packings such as emulsions and foams [52], equation
2 is indeed a good description.

However, real world granular particles are normally
not very squishy; they change their volume fraction by
isobarically changing their packing geometry not by com-
pression. We all intuitively know this from kitchen
physics: if we want to “ll more grains into a storage con-
tainer we do not compress them with a piston, but we
tap the container a couple of times on the counter top to
change its packing structure.

For a more quantitative example lets compare two
glass spheres (Young•s modulus= 70 GPa, diameter= 250
µm) which are either uncompressed at the upper surface
or compressed belowa 1 m high column of other glass
spheres. Using Hertz law we can derive that this increase
in pressure will deform the sphere by approximately 10 nm
at each contact. This deformation is an order of magnitude
smaller than the vertical surface roughness of typical glass
spheres[53]. Assuming that the sphere is compressed sym-
metrically, this corresponds to a change in volume fraction
of 7×10−5 compared to the uncompressed sphere. This il-
lustrates that the large range of 0.55 < � g < 0.65 available
to frictional sphere packings can not be explored by com-
pression.

Please note that granular experiments can be per-
formed in a way to test frictionless models. E.g. the
compression of frictional but su� ciently soft photoelas-
tic discs (with a Young•s modulus of 4MPa [54]) can be
used to verify equation 2 [54] or study glassy behavior
[55]; provided that the tangential forces are relaxed by ad-
ditional tapping or vibration. These experiments do how-
ever not prove that frictionless models describe generic
frictional particles.

4.1 Friction with your neighbors? Think locally!

BecauseZ and� g are in frictional packings not simulta-
neously controlled by the globally de“ned parameter pres-
sure, the idea expressed in equation 2 of a functionZ(� g)
runs into an epistemological problem. Contacts are formed
at the scale of individual particles and their neighbors. At
this scale the global� g is not only unde“ned; due to local
volume correlations [56, 57] it would even be impossible
for a particle scale demon to compute� g by averaging over
the volume of the neighboring particles.

What is needed for the theoretical description of fric-
tional particles is an ansatz which explainsZ using only
locally de“ned (i.e. on a particle level) parameters [58…
61]. The most important [61] of these local parameters
is the local volume fraction� l which describes by how
much free volume an individual particle is surrounded.� l

is computed by dividing the volume of the particle by the
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Figure 6. Understanding contact numbers in sphere packings re-
quires a local approach.a) The average local contact numberZl

of individual spheres, measured by X-ray tomography and aver-
aged in local volume fraction� l bins of size 0.02. Data corre-
sponds to 15 di� erent sphere packings with global volume frac-
tions � g in the range from 0.56 to 0.625. Within experimental
scatter,Zl depends only on� l, not on� g. b) The red dots cor-
respond to a bin-wise average of all data shown in panel a. The
local mean “eld theory by Songet al. (eq. 3, no “t parameter)
provides a fair description of the data. This can not be said about
the local interpretation of the scaling law for frictionless, com-
pressed spheres (eq. 2, one “t parameter). From [61].

volume of its Voronoi cell (a tessellation method assign-
ing all points in space to the closest particle). However,
for a complete local description more parameters such as
the shape of the Voronoi cells [62] or the fabric anisotropy
[63] are needed.

Figure 6 substantiates this claim for the necessity of
local theories. Panel a shows that the number of contacts
Zl an individual particle will form does only depend on its
own� l, not the� g value of the packing it resides in. Figure
6 b) demonstrates thatZl can be well explained by the local
theory presented in [31], which predicts:

Z =
2
√

3 � l

1− � l

(3)

A local reinterpretation of equation 2 for frictional
systems (� g becomes� l, Z0

iso
becomesZµ

iso
, � iso becomes

� RLP) fails to describe the experimental data.

5 Friction is one reason for history
dependence in granular systems.

A number of experiments demonstrate history dependent
behavior in granular materials: Two seemingly identical
packings, which only di� er in their preparation histories,
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Figure 7. History dependence in granular systems.a) Three
samples of glass beads are compacti“ed to the same value of
� g =0.613 using three di� erent initial tapping strengths. At this
point (vertical dotted line) the tapping strength is set to the same
value of 4.2 g in all three experiments. The system does however
respond di� erently depending on its preparation history. From
[64]. b) Volume fraction alone is not su� cient to characterize
dilatancy onset. In this contact dynamics simulations an initially
dense system of discs has been sheared long enough to dilate to
its critical state (solid line). When then the shear direction is
reversed (dashed line), the system responds “rst by compaction
before it dilates again. This implies that the packings at points I
and II have identical volume fractions but respond di� erently to
shear in the same direction. From [65].

respond either di� erently to an external excitation, or they
di� er in some of their not immediately obvious mechani-
cal properties.

An example of the “rst type is shown in “gure 7a:
three samples are compacti“ed to the same volume frac-
tion � 0 but using three di� erent driving strengths� i. When
these samples at� 0 are then driven with the same strength
� 0, their response depends on the past� i, not� 0 [64]. Sim-
ilar results can be obtained for periodically shearing glass
spheres in a parallelepiped shear cell [66] or going to large
strains in a simple shear cell (“g. 7b) [65].

Examples of the second type of history dependence in-
clude how the pressure distribution below a sandpile de-
pends on its preparation history: If the sand rained down
from a large sieve, the maximum pressure at the bottom
plate will be below the tip; which is the point with the
largest column of sand on top. However, if the sand ”owed
out of a small funnel opening, which means that the pile
grew from many downhill avalanches, the maximum pres-

sure at the bottom plate will be at a ring with a diameter of
roughly one third of the total pile diameter [67]. An sim-
ilar example is the history dependence that exists in the
so called Janssen e� ect: The pressure at the bottom of a
cylindrical column “lled with grains will be lower than the
total weight of the grains because tangential forces at the
sidewalls carry a part of the load. The amount of this re-
duction will again depend on the preparation history [68].
Finally it has also been shown numerically, that the num-
ber of contacts formed in a packing depends on the prepa-
ration history [69].

History dependence does also exist in frictionless
packings (see [28, 51] for a novel approach how the jam-
ming volume fraction can be used as a state variable to
characterize the history). However, most of the examples
listed above seem to require friction. Either because the
extra degrees of freedom allow variability in the contact
number or the geometric fabric formed by the contacts
(pressure distribution at the sand pile bottom, shear re-
sponse at critical state). Or because the memory of a pre-
vious state can be encoded as a particular con“guration in
the force phase space spanned by hyperstaticity (Janssen).

In all examples discussed here the apparent identity
of the initial states has only been established in terms of
global variables such as shape of the sample and� g. In
fact, in all these cases history dependence can also be
viewed as another name for: "we do not know all relevant
parameters which characterize the system".

6 Granular matter is rarely spherical.

Most of the readers will have heard some variant of the
"spherical cow in vacuum" joke [72]. But in fact there
are not only good reasons for theorists to use spheres as
a “rst approximation, also numerical scientists appreci-
ate the easy collision detection algorithm coming with
spheres. And experimentalist like spheres because they
are the only monoschematic particles (all particles have
the same shape) which are easily available in large quanti-
ties. Being monoschematic is a big advantage during im-
age processing where the a priori knowledge of their shape
helps to identify the individual particles [73].

Still, real world granular materials are basically al-
ways non-spherical in shape. This adds additional com-
plexity which every theory suitable for practical purposes
will need to take into account. Figure 8 discusses some
of this complexity using packings of tetrahedra as an ex-
ample. Contrary to spheres, tetrahedra can form four dif-
ferent types of contacts, cf. “gure 8b. This has important
consequences for the pair correlation function shown in
“gure 8a. Because perfectly aligned face-to-face contacts
are less frequent than slightly shifted face-to-face or low
angle face-to-edge contacts, the closest possible distance
between two particles isnot the most likely contact con-
“guration [70]. The di� erent shape of the “rst peak of
g(r) brings as a consequence that scaling laws developed
for compressible sphere packings [7, 74], such as eq. 2,
will not work for compressible tetrahedra. Moreover, “g-
ure 8 c) shows, that tetrahedra packings are even stronger
hyperstatic and history-dependent than sphere packings.
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Figure 8. Packings of tetrahedra di� er from sphere packings.a)
The pair correlation functions of experimental tetrahedra pack-
ings shows that contrary to spheres the shortest possible distance
rmin (approximately 0.408 times the side-length) is not the most
likely distance between individual particles (indicated by a ver-
tical dashed line) [70]. O� sets have been added for improved
readability. b) Tetrahedra form four di� erent types of contacts,
which block di� erent numbers of translational and rotational de-
grees of freedom. For the purpose of de“ning a distance to iso-
staticity we need to determine the total number of constraints per
particleC blocked by the combination of all four contact types.
c) Isostaticity corresponds toC = 6 (each tetrahedra has three
rotational and three translational DOF). Even the loosest tetra-
hedra packings have twice the constraint number needed for iso-
staticity, which means that tetrahedra packings are much more
hyperstatic than sphere packings. Moreover do tetrahedra pack-
ings exhibit a strong history dependence. Using di� erent tapping
protocols it is possible to create pairs of packing which di� er
strongly in only one of the two variablesC and� g [71].

Experimentally, one way of moving away from the
spherical cow paradigm is to take advantage of the quickly
improving 3D printing technology to create large samples
of monoschematic but non-spherical particles [75, 76]. Al-
ternatively, we can directly use natural materials such as
sand and improve our 3D image processing to obtain trust-

worthy segmentation results [77]. Additionally, there is
also progress towards theories for non-spherical particles
[59, 60].

Conclusion

Frictionless spheres are a great model for emulsions,
foams, glasses, and colloids. They give reasonable results
for granular gases and describe even glassy behavior in
driven granular systems. But africtionless granular pack-

ing is a a self-contradicting statement, describing a theo-
retical model that for the most part has outlived its useful-
ness.
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