In [1] the rotational frequency of a single Vibrot was incorrectly plotted as a function of the excitation amplitude A. Instead the figure shows the data in dependence of the dimensionless acceleration $\Gamma = \frac{A(2\pi f_D)^2}{g}$, where g is the gravitational acceleration. Only in the case of $f_D = 50$ Hz $A = 1.3$ mm corresponds to $\Gamma = 1.3$ g and vice versa. The corresponding paragraph of the original manuscript must then be replaced by the following: “Figure 4 shows $\bar{\nu}$ vs. f_D for two different values of the dimensionless acceleration $\Gamma = \frac{A(2\pi f_D)^2}{g}$. For a low Γ the particle performs slow rotation where f_D depends non-monotonously on the frequency characterized by a minimum at $f_D = 50$ Hz. For large Γ, we observe slow rotation at low frequency and tumbling motion for $f_D \geq 30$ Hz, where the rotational velocity decreases with increasing f_D.”

The corrected version of the plot is shown in Fig. 4.

![Figure 4](image_url)

Figure 4. Mean rotational velocity $\bar{\nu}$ of a Vibrot as a function of the excitation frequency f_D for (a) $\Gamma = 1.3$ g and (b) $\Gamma = 1.7$ g. Error bars are on the order of the marker size.

REFERENCES