Crack formation induced by desiccation in nanoparticulate layers

GRK 1161 – TP 8
Martin Tupy and Thorsten Pöschel
Institute for Multiscale Simulations, Friedrich-Alexander Universität Erlangen-Nürnberg

Motivation

The electrical properties of nanoparticulate layers are significantly affected by the drying process of suspensions. The fast desiccation required by the fabrication process induces the formation of cracks like in mud or clay [1]. The formed fractures destroy the conductivity of the nanoparticulate layers. Therefore, this cracking should be avoided by using an optimal drying process.

Recent experiments [2] on drying paste show that it is possible to control the morphology of the anisotropic crack patterns that appear during the drying process.

Objectives

- Study the process of desiccation cracking and its dependency on the physical properties of the suspensions and on the printing process
- Elaborate methods to avoid cracking using optimal process management

Model

Vapour Field

\[\frac{\partial \theta(x, t)}{\partial t} = \nabla (D(x) \nabla \theta(x, t)) + \sum_i \theta(x) \delta(x - x_i) Q_i(t) \]

Sinks: condensation of vapour
Sources: evaporation of liquid

\[Q_i(t) = [kg \ m^{-2} \ s^{-1}] \]

Temperature Field

\[\frac{\partial \theta(x, t)}{\partial t} = \nabla (D(T) \nabla \theta(x, t)) + \sum_i \theta(x) \delta(x - x_i) Q_i(t) \]

Sinks: evaporation of liquid
Sources: condensation of vapour

\[Q_i(t) = [J \ m^{-2} \ s^{-1}] \]

\[Q_i(t) = Q_i(t) - Q_i(t) \]

Nanoparticles (ZnO)

The initial suspension is generated such that its statistical properties agree with experiments.

Liquid bridges

The shape of a liquid bridge is obtained by minimizing its surface under the preconditions that the volume of the bridge and the wetting angle \(\theta \) are equal to the desired values.

Simulation technique

Modelling challenges:

- initial structure: nearly dried suspension
- evaporation
- motion of the nanoparticles

Numerical methods and algorithms:

- modified bottom-to-top reconstruction in agreement with experimental data
- Monte-Carlo algorithm
- classical (force based) Molecular Dynamics

Applied methods

Method: BTR [5]

Working plan

- generate initial conditions according to experimental findings
- specify sources and sinks for the diffusion problems in accordance with the liquid bridge geometry
- implement efficient solution of the diffusion problem with complicated boundary conditions
- derive the forces to be used in Molecular Dynamics
- obtain the criterion for the breaking of liquid bridge
- investigate in detail the prevention, control and utilization of cracks

Collaboration

Internal cooperations:
- TP Roosen: nanoparticle printing technology
- TP Peukert: layer formation mechanisms, measurement of drying kinetics

External cooperations:
- D. Wolf (Theoretical Physics, Duisburg-Essen University, Germany): structure characteristic of nanoparticulate sediments
- A. Formella (Applied Informatics, Vigo University, Spain): efficient algorithms and simulation techniques
- I. Goldhirsch (Technical Faculty, Tel Aviv University, Israel): continuum mechanical description of nanoparticulate systems

Literature: