Positron Emission Particle Tracking –
A Comprehensive Tool for Characterization of Fluidized Beds with Secondary Gas Injection

T. Hensler¹, M. Tuppy², T. Strer³, T. Pöschke⁴ and K.-E. Wirth⁵

¹ Institute of Particle Technology, University Erlangen-Nuremberg, Germany
² Institute for Multiscale Simulation, University Erlangen-Nuremberg, Germany

Fluidized beds with secondary gas injection

Conventional characterization methods

Determination of the characteristics of the system:
• 1−ε: solids concentration
• Δh: penetration depth of the jet into the suspension phase
• θ: half jet opening angle

Measurement techniques:
• invasive
 • capacitance probes
 • optical fiber probes
• non-invasive
 • X-ray CT

Material and setup

Plant characteristics:
• hollow steel cylinder:
 – inner diameter: \(d_{\text{cylinder}} = 190 \text{ mm} \)
 – length: \(L_{\text{cylinder}} = 1900 \text{ mm} \)
• gas distributor:
 – porous sintered metal base plate
 – cylindrical nozzle with conical top section:
 \(d_{\text{nozzle}} = 10 \text{ mm} \)
• bed inventory:
 – fixed bed height: \(h_b = 500 \text{ mm} \)

Material properties:
• process fluid: pressurized air
• solids:
 – glass beads:
 \(x_{\text{diam}} = 732 \mu \text{m} \)
 \(\rho_s = 2480 \text{ kg m}^{-3} \)

Basic principle:
• \(\beta \)-decay
• annihilation of \(e^+ \) and \(e^- \)
• emission of back-to-back \(\gamma \)-rays
• tracer activity: 20–40 MBq

Positron emission particle tracking (PEPT)

Detection of radiation:
• ADAC Forte \(\gamma \)-ray cameras
• sampling frequency: 100 kHz

Solids concentration profile and residence time behavior of a single particle

Solids holdup (1−ε)

Methodology:
• derivation of continuous fields from discrete particle positions [1]

\[
\rho_s(x, t) = \sum m_i \delta(x - x_i)
\]

\[
\rho_s(x, t) = \sum m_i \delta(x - x_i)
\]

\[
(1 - \varepsilon) / \varepsilon = \sum \rho_s(x, t)
\]

Results:
• suspension phase: solids holdup close to minimum fluidization condition
• jet region distinguished by reduced solids holdup
• dimensions of the jet region:
 – half opening angle: \(\theta_{\text{jet}} = 16.1^\circ \)
 – penetration depth: \(\Delta h_{\text{jet}} = 275 \text{ mm} \)

Determination of the residence time of a single particle in the jet region

The residence time density \(\varepsilon_i \)

Methodology:
• relative residence time density \(\varepsilon_i \)

\[
\varepsilon_i = \sum \Delta t_i \cdot V_i / \varepsilon_{\text{inj}}
\]

Results:
• suspension phase: \(\varepsilon_i \) = 1.0
 – characteristic for ideally mixed systems
• jet region: \(\varepsilon_i = 0.699 \)
 – The residence time of a single particle in the jet region is 69.9% of that in an equally sized volume element in the suspension phase.

Summary and outlook

Positron emission particle tracking:

Powerful tool for design and optimization of fluidized bed reactors with a well defined reaction zone

Conclusions

... is a non-invasive tool for analysis of the behavior of single particles
... provides results with high temporal & spatial resolution
... provides data that cannot be obtained by conventional measurement techniques
... delivers important parameters for design and operation of reactors in continuous or batch mode

Acknowledgements:

The authors would like to thank Prof. D. Parker for his kind support in conducting PEPT measurements at the Positron Imaging Centre of the University of Birmingham.

Support by the German Research Foundation DFG in the framework of the Cluster of Excellence “Engineering of Advanced Materials and Processes” is gratefully acknowledged.

http://www.lfg.uni-erlangen.de