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The transport of sediment by a fluid along the surface is responsible for dune formation, dust entrainment,
and a rich diversity of patterns on the bottom of oceans, rivers, and planetary surfaces. Most previous models of
sediment transport have focused on the equilibrium (or saturated) particle flux. However, the morphodynamics of
sediment landscapes emerging due to surface transport of sediment is controlled by situations out of equilibrium.
In particular, it is controlled by the saturation length characterizing the distance it takes for the particle flux
to reach a new equilibrium after a change in flow conditions. The saturation of mass density of particles
entrained into transport and the relaxation of particle and fluid velocities constitute the main relevant relaxation
mechanisms leading to saturation of the sediment flux. Here we present a theoretical model for sediment transport
which, for the first time, accounts for both these relaxation mechanisms and for the different types of sediment
entrainment prevailing under different environmental conditions. Our analytical treatment allows us to derive
a closed expression for the saturation length of sediment flux, which is general and thus can be applied under
different physical conditions.
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I. INTRODUCTION

When a sediment bed is exposed to a fluid flow, particles
can be entrained and transported by different mechanisms.
The transport regime depends primarily on the inertial char-
acteristics of the particles and the fluid. Sufficiently light
particles are transported as suspended load in which their
weight is supported by the turbulence of the fluid. In contrast,
particles which are sufficiently heavy are transported along
the surface [1,2]. This type of transport incorporates two main
transport modes, namely saltation, which consists of sediment
grains jumping downstream close to the ground at nearly
ballistic trajectories, and creep, which consists of particles
rolling and sliding along the sediment bed. Sediment transport
along the surface is responsible for a wide range of geophysical
phenomena, including surface erosion, dust aerosol emission,
and the formation and migration of dunes [1–6]. Therefore, the
quantitative understanding of sediment transport may improve
our understanding of river beds evolution [2], the emission of
atmospheric dust [4,6], and the dynamics of planetary sand
landscapes [3,6,7].

Once sediment transport begins, the fluid loses mo-
mentum to accelerate the particles as a consequence of
Newton’s second law (the transport-flow feedback, e.g.,
Refs. [8–11]). Therefore, the sediment flux, Q, which is the
average momentum of grains transported per unit soil area,
is limited by an equilibrium value, the saturated flux, Qs .
Although previous studies focused on this equilibrium flux
(e.g., Refs. [12–17]), the dynamics of sediment landscapes
is controlled by situations out of equilibrium. In particular,
the sediment flux needs a spatial lag—the so-called saturation
length, Ls—to adapt to a change in flow conditions [18–21].
This saturation length introduces the main relevant length scale
in the dynamics of sediment landscapes under water and on

the surface of planetary bodies. For instance, the saturation
length controls the minimal size of crescent-shaped (barchan)
dunes moving on top of bedrock, as well as the wavelength
of the smallest dunes (the “elementary dunes”) emerging on
top of a sediment bed [19,21]. Although important insights
were gained recently from experimental studies [19,22,23], the
physics behind the saturation length, and thus the dependence
of Ls on flow and sediment attributes, is still insufficiently
understood.

One of the most important deficiencies in our understanding
of the dependence of Ls on flow and sediment conditions is
that it remains uncertain which mechanisms are most important
in determining the saturation of the sediment mass flux. On
the one hand, it has been suggested that the acceleration of
transported particles due to fluid drag is the dominant relax-
ation mechanism [19–22]. This model neglects the entrainment
of sediment bed particles due to fluid lift, as well as the
entrainment of sediment bed particles and the deceleration of
transported particles due to collisions of transported particles
with the sediment bed (grain-bed collisions). On the other
hand, the entrainment of sediment bed particles by fluid
lift and grain-bed collisions has also been proposed to be
the dominant relaxation mechanisms [18,24]. However, these
models neglect momentum changes of transported particles,
which is exactly the opposite situation of the models in
Refs. [19–22]. Moreover, to our knowledge, all previous
models neglected a further relaxation mechanism of the
sediment flux, namely the relaxation of the fluid speed in the
transport layer (U ) due to the saturation of the transport-flow
feedback [25].

To address this situation and develop an accurate expres-
sion for Ls that can be used in future studies, this paper
presents a model for flux saturation in sediment transport
which accounts for all aforementioned mechanisms for the
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saturation of sediment flux. In particular, our theoretical model
accounts for the coupling between the entrainment of sediment
bed particles due to fluid lift and grain-bed collisions, the
acceleration and deceleration of transported particles due to
fluid forces and grain-bed collisions, and the saturation of
U due to the saturation of the transport-flow feedback. Our
analytical model allows us to derive a closed expression for
Ls which can be applied to different physical environments.
Our model suggests that grain-bed collisions, which have
been neglected in all previous studies, have an important
influence on the saturation length, Ls . Moreover, our model
suggests that the relaxation of U plays an important role for
sediment transport in dilute fluids (aeolian transport), whereas
it plays a negligible role for sediment transport in dense fluids
(subaqueous transport).

In a recent Letter (see Ref. [26]), we presented our equation
for Ls and showed that it is consistent with measurements of
Ls in both subaqueous and aeolian sediment transport regimes
over at least five orders of magnitude in the ratio between
fluid and particle density. In the present paper, we derive the
analytical model presented in Ref. [26] in more detail and
study the properties of the equations governing the behavior
of the saturation length in both transport regimes. Since
Ref. [26] includes a detailed comparison of our model against
measurements, no model comparisons against measurements
are included here.

This paper is organized as follows. Sections II and III
discuss the analytical treatment of flux saturation. In the former
section, we derive the mass and momentum conservation
equations for the layer of sediments in transport, as well as the
differential equation of the sediment flux in terms of the mass
density and average velocity of the transported particles. These
equations allow us to obtain a mathematical expression for the
saturation length of sediment transport, which is presented
in Sec. III. This section also discusses how to determine
the quantities appearing in the saturation length equation,
which encode the attributes of sediment and flow, as well as
the characteristics of sediment entrainment and particle-fluid
interactions. In Sec. IV we use our theoretical expression to
perform a study of the saturation length as a function of the
relevant physical quantities controlling saturation of sediment
flux. Conclusions are presented in Sec. V.

II. FLUX SATURATION IN SEDIMENT TRANSPORT

The downstream evolution of the sediment flux, Q, towards
its equilibrium value, Qs , can be described by the following
equation [20], which is identical to Eq. (1) of Ref. [26]:

�(Q) = dQ

dx
≈ Qs − Q

Ls

, (1)

which is valid in the regime where Q is close to saturation
(|1 − Q/Qs | � 1). The length-scale Ls , the saturation length,
characterizes the response of the sediment flux due to a small
change in flow conditions around equilibrium. Since �(Qs) =
0, Ls can be written as the negative inverse first-order Taylor
coefficient of �(Q),

Ls = −
(

d�

dQ

)−1

Q=Qs

. (2)

In this section, we derive the equations that describe the
downstream evolution of the sediment mass flux, Q, towards
its equilibrium value, Qs, in sediment transport under turbulent
boundary layer flow.

The mass flux Q is defined as Q = MV , where M is
the average transported mass per unit soil area and V is
the average particle velocity. Therefore, the saturation of
Q is dictated by the mechanisms governing the relaxation
of M and V towards their saturated values, Ms and Vs ,
respectively. The quantitative description of the saturation
processes of M and V requires incorporation of all relevant
forces acting on the sediment particles in transport, namely
drag, gravity, buoyancy, collision forces between particles in
transport (“midfluid collisions”), and friction due to collisions
between particles and the bed. Indeed, Moraga et al. [27]
found experimentally that lift forces due to shear flow acting
on a particle surrounded by fluid—which have often been
assumed to be significant during transport (e.g., Ref. [2])—are
approximately an order of magnitude smaller than the drag
force and can be, thus, neglected in our calculations. On
the other hand, the so-called added mass force exerted by
accelerated or decelerated particles to dislodge the fluid as
they move through it leads to enhanced inertia of the particles
in transport. This added mass effect plays a relevant role for
the motion of the particles [28], and thus we also take it
into account. Our analytical treatment applies to situations
where the fluid velocity is not too high such that only
transport through saltation or creep (the main transport modes
of particles along the surface [1,6]) is considered. Transport
through suspension or dense transport regimes, such as sheet
flow [29], are, thus, not considered.

In Sec. II A we first present the definitions and notations
used in our study. Afterwards, in Sec. II B, we present the local
conservation equations, from which we obtain the saturation
equations, presented in Sec. II C.

A. Definitions and notations

We use a three-dimensional coordinate system (x,y,z),
where x denotes the direction of fluid motion, y is the
lateral direction, and z is the vertical direction. The top of
the sediment bed, which corresponds to the height at which
the local particle concentration equals approximately 50%
of the particle concentration deep within the bed [30], is
located at the vertical position z = ho(x,y). Here we use
the approximation that the slopes of bedforms are usually
very small (∂ho/∂x ≈ 0). Moreover, since the time scale of
the relaxation of the sediment flux due to changes in the
flow is typically much smaller than the time scale of the
evolution of bedforms (dunes and ripples) [21] (Tfl � Tbed),
we can adopt the approximation that the transport over the
sediment landscape is in the steady state, i.e., ∂/∂t = 0,
where t denotes time. Furthermore, since our description
relates to the saturation of the mass flux Q due to changes
in the downstream direction, we consider a laterally invariant
sediment bed (∂/∂y = 0).

We consider a certain microscopic configuration of N

particles (including the limit N → ∞) labeled by an upper
index n whose centers of mass are located at xn. Each particle
has a mass mn and a velocity vn and is subjected to a force Fn
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resulting in an acceleration an = Fn/mn. These forces include
both external body forces (Fex n = mnaex n) and interparticle
contact forces. In general, these forces are nonconservative.
The interparticle contact forces occur for all pairs of contacting
particles. We therefore denote them by Fmn = −Fnm, which
is the contact force applied by the particle with the number n

on the particle with the number m. We note that Fmn = 0 if
these particles are not in contact, and we define Fmm = 0 (no
self-interaction). Hence, the total acceleration of particle n can
be written as

an = 1

mn

∑
m

Fnm + aex n. (3)

We define f (x,v,m,t), the density of a certain microscopic
configuration of particles at time t , as

f (x,v,m,t) =
∑

n

δ[x − xn(t)]δ[v − vn(t)]δ(m − mn). (4)

It describes the number of particles, dN , with positions,
velocities, and masses in infinitesimal intervals around x, v,
and m, respectively, at time t ,

dN = f (x,v,m,t)d3xd3vdm. (5)

Moreover, f determines the mass density,

ρ(x,t) =
〈∫

R4
mf (x,v,m,t)d3vdm

〉
t

, (6)

while the mass-weighted average of a quantity A(x,v,m,t) is
defined through the equation

〈A〉(x,t) = 1

ρ(x,t)

〈∫
R4

m(Af )(x,v,m,t)d3vdm

〉
t

. (7)

In Eqs. (6) and (7) 〈·〉t denotes the time average,

〈A〉t = lim
T →∞

1

T

∫ t+T

t

A(t ′)dt ′. (8)

Using these definitions, we can calculate the total trans-
ported mass per unit soil area (M), the total mass flux (Q), and
the average particle velocity (V ) from the expressions

M =
∫ ∞

ho

ρdz, (9)

Q =
∫ ∞

ho

ρ〈vx〉dz = M〈vx〉, (10)

V = Q

M
= 〈vx〉, (11)

respectively, where the overbar denotes the mass-weighted
height average,

A =
∫ ∞
ho

ρAdz∫ ∞
ho

ρdz
= 1

M

∫ ∞

ho

ρAdz. (12)

B. Local mass and momentum conservation equations

In this section, the local average mass and momentum
conservation equations for our particle system are presented
using the notations and definitions introduced in the last
section. The derivation of these conservation equations can

be found in Babic [31]. For our system (∂/∂t = ∂/∂y = 0),
these equations are

∂ρ〈vx〉
∂x

+ ∂ρ〈vz〉
∂z

= 0, (13)

∂

∂x

(
ρ
〈
v2

x

〉 + Pxx

) = ρ
〈
aex

x

〉 − ∂

∂z
(ρ〈vxvz〉 + Pxz), (14)

∂

∂x
(ρ〈vxvz〉 + Pzx) = ρ

〈
aex

z

〉 − ∂

∂z

(
ρ
〈
v2

z

〉 + Pzz

)
, (15)

where Pij is given by [31]

Pij = 1

2

〈∑
mn

Fmn
i xnm

j

∫ 1

0
δ(x − xn − sxnm)ds

〉
t

, (16)

with xmn = xn − xm. Pij is the contact force contribution to
the particle stress tensor since its gradient compensates the
contact force density [31],

∂Pij

∂xj

= −
〈∑

mn

Fmn
i δ(x − xm)

〉
t

. (17)

It describes the momentum flux due to collisions between
particles. In fact, even though the total momentum is conserved
in collisions, the finite size of the particles, and thus xmn 	= 0,
lead to a shift of the location of this momentum. We note
that this shift of the momentum location in collisions has
been neglected in our model derivation in Ref. [26] (dilute
approximation). As a consequence, Eq. (14) is a generalization
of Eq. (2) of Ref. [26], such that these two equations are equal
if the contributions from Pij in Eq. (14) are neglected. The

distribution
∫ 1

0 δ(x − xn − sxnm)ds appearing in Eq. (16) is
the mathematical expression for a “delta line” between xm

and xn. Integrating this distribution over an arbitrary domain
yields the fraction of the line contained in this domain.
The inhomogeneities introduced by this and the other δ

distributions indirectly appearing in quantities of the type ρ〈·〉
are smoothed out by the time averaging procedure 〈·〉t , which
is also incorporated in the definition of 〈·〉.

C. Differential equations of flux saturation

The results of the last section can be now used in order
to derive the saturation equations for the average transported
mass per unit soil area (M) and the average particle velocity
(V ), used to define the sediment flux, Q = MV . To do so, we
first integrate Eqs. (13)–(15) over the height. This calculation is
the subject of Sec. II C 1. Thereafter, in Sec. II C 2, we combine
the resulting horizontal and vertical momentum balances by
means of a Coulomb friction law and rewrite each term of the
horizontal momentum balance equation in terms of M and V .
We then present the mass and horizontal momentum balance
equations in their final form in Sec. II C 3.

1. Height-integrated conservation equations

Since our description relates to the saturation of the mass
flux Q due to changes in the downstream direction (x),
we integrate Eqs. (13)–(15) over height (

∫ ∞
ho

dz). By using
Eqs. (9)–(12) and by further taking into account ∂ho/∂x ≈ 0
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PÄHTZ, PARTELI, KOK, AND HERRMANN PHYSICAL REVIEW E 89, 052213 (2014)

and ρ(∞) = 0, this height-integration yields

d

dx
(MV ) = (ρ〈vz〉)(ho), (18)

d

dx

(
M

〈
v2

x

〉 + Pxx/ρ
) = M

〈
aex

x

〉 + (ρ〈vxvz〉 + Pxz)(ho),

(19)

d

dx
(M〈vxvz〉 + Pzx/ρ) = M

〈
aex

z

〉 + (
ρ
〈
v2

z

〉 + Pzz

)
(ho).

(20)

We note that Eq. (19) corresponds to Eq. (2) of Ref. [26] if
the contributions from Pij in Eq. (19) are neglected (dilute
approximation).

a. Coulomb friction law. The terms (ρ〈vxvz〉 + Pxz)(ho)
and (ρ〈v2

z 〉 + Pzz)(ho) are the vertical fluxes of horizontal and
vertical momentum component per unit volume at the location
of the sediment bed, respectively, whereby the velocity terms
are the contributions due to particle motion, and Pxz(ho) and
Pzz(ho) are the contributions due to collisional momentum
transfer. In other words, these two terms describe the total
amounts of horizontal and vertical momentum, respectively,
per unit soil area that enter the transport layer per unit time
from the sediment bed. These momentum changes per unit area
and time of the transport layer can be seen as being caused by
an effective force per unit area (fbed) which the sediment bed
applies on the transport layer,

f bed
x = (ρ〈vxvz〉 + Pxz)(ho), (21)

f bed
z = (

ρ〈v2
z 〉 + Pzz

)
(ho). (22)

Bagnold [32,33] was the first to propose that these force
components are related to each other through a Coulomb
friction law, independent of whether the transport regime is
subaqueous or aeolian. That is,

f bed
x = −μf bed

z , (23)

where μ is the Coulomb friction coefficient. Models for
saturated sediment transport using this Coulomb friction law
have been successfully validated through comparison with
experiments, thus giving support to the Coulomb friction
law adapted to sediment transport (e.g., [11,32–34]). Addi-
tional support comes from numerical simulations of saturated
(∂/∂x = 0) granular Couette flows under gravity. Zhang and
Campbell [35] found for such flows that the interface between
the particle bed and the transport layer is characterized by a
constant ratio between the xz and zz components of the particle
stress tensor (T), Txz = −μTzz. Since both Couette flow and
sediment transport along the surface are granular shear flows, it
seems reasonable that also the interface between the sediment
bed and the transport layer for saturated sediment transport
along the surface is characterized by such a law. Indeed, f bed

x

and f bed
z become equal to Txz and Tzz, respectively, if 〈vz〉 = 0

[31], which is fulfilled for saturated sediment transport since
∂/∂x = 0 implies d(ρ〈vz〉)/dz = 0 [cf. Eq. (13)], which in
turn implies 〈vz〉 = 0 due to ρ〈vz〉 vanishing sufficiently deep
within the sediment bed. Finally, it seems reasonable that
the Coulomb friction law should be also approximately valid
in situations weakly out of equilibrium [18], provided the
sediment flux is close to its saturated value. Assuming the

validity of Eq. (23), we can combine Eqs. (19) and (20) to

d

dx
(cvMV 2) = M

〈
aex

x

〉 + μM
〈
aex

z

〉
, (24)

where cv is a correlation factor given by

cv = 1

V 2

〈
v2

x

〉 + Pxx/ρ + μ(〈vxvz〉 + Pzx/ρ). (25)

b. The correlation factor. Since we are only interested
in situations close to equilibrium, and since at equilibrium
〈vz〉 = 0 (see the discussion in the previous paragraph), it
follows that 〈v2

x〉 
 μ|〈vxvz〉| (μ is of order unity). Moreover,
for sufficiently dilute granular flows, the momentum transfer
in collisions is small and thus 〈v2

x〉 
 |Pij |/ρ. While sediment
transport in the aeolian regime is certainly dilute enough to
ensure this condition for most of the transport layer, sediment
transport in the subaqueous regime might not fulfill it because
a large part of the transport occurs in rather dense regions
of the transport layer [30]. However, using the code of
Durán et al. [30], we confirmed that 〈v2

x〉 
 |Pij |/ρ also for
subaqueous transport. Hence, cv can be approximated as

cv ≈
〈
v2

x

〉
V 2

. (26)

We confirmed, using the code of Durán et al. [30], that for
transport in equilibrium (∂/∂x = 0) cv is nearly constant with
the fluid shear velocity, u∗, in both sediment transport regimes.
Hence, it seems reasonable that changes of cv with x during
the saturation process of the sediment flux close to equilibrium
can be regarded as negligible compared to the corresponding
changes of M or V with x. In this manner, we can consider the
value of cv associated with sediment transport in equilibrium,
independent of the downstream position and of the fluid shear
velocity. This leads to the following approximation for cv:

cv ≈
〈
v2

x

〉
s

V 2
s

. (27)

where 〈v2
x〉s is the equilibrium value of 〈v2

x〉. This equilibrium
value of cv can be determined from experiments as we will
discuss in Secs. III C 1 and III D 1.

2. Momentum balance equation in terms of M and V

Now we express both terms on the right-hand side of the
momentum conservation equation, i.e., Eq. (24), as functions
of M and V in order to obtain a differential equation describing
the saturation of M and V .

The first term on the right-hand side of Eq. (24) can be
written as [11,18]

M
〈
aex

x

〉 = 3M

4casd
Cd (Vr )V 2

r , (28)

where s = ρp/ρf is the ratio between sediment and fluid
density; Vr is defined as

Vr = U − V, (29)

which is the difference between the average fluid velocity (U =
u) and the average horizontal particle velocity (V ), where u(z)
is the fluid velocity profile; Cd is the drag coefficient, which
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is a function of Vr ; and ca accounts for the added mass force
through

ca = 1 + 1

2s
. (30)

The added mass force arises when the particle is accelerated
relative to the surrounding fluid, because the fluid layer
immediately surrounding the particle will also be accelerated.
As denoted by Eq. (30), this “added mass” of the fluid
layer amounts to approximately one-half the weight of the
fluid displaced by the particle [2]. While the added mass
correction is significant for transport in a dense medium such
as water [28], it is negligibly small for sediment transport in the
aeolian regime since ca ≈ 1 for large s. Thus, this correction
is usually disregarded in studies of aeolian sediment transport
(e.g., Refs. [11,18]). We note that Eq. (28) is not valid for dense
transport regimes like sheet flow, in which the drag coefficient
displays a strong dependence on the concentration profile of
transported particles [36]. In this manner, Eq. (28) can be used
in the present study because our analytical treatment considers
the two main modes of transport, namely saltation and creep.

The second term on the right-hand side of Eq. (24),
μM〈aex

z 〉, can be taken as approximately equal to the
buoyancy-reduced gravity force [11,33] corrected by the added
mass force. It can be written as

μM
〈
aex

z

〉 = − μ

ca

g̃M, (31)

where g̃ = (s − 1)g/s is the buoyancy-reduced value of the
gravity constant, g.

3. The conservation equations in their final form

By substituting Eqs. (28) and (31) into Eq. (24) using
dcv/dx ≈ 0 [cf. Eq. (27)], we obtain the momentum con-
servation equation in terms of M and V , whereas Eq. (18)
gives the mass balance. Therefore, the mass and momentum
conservation equations in their final form read as follows:

d(MV )

dx
= (ρ〈vz〉)(ho), (32)

cv

d(MV 2)

dx
= 3M

4casd
Cd (Vr )V 2

r − μ

ca

g̃M. (33)

We note that Eq. (33) is identical to Eq. (4) of Ref. [26] if
the definition of ca [Eq. (30)] is inserted. We further note that
Eq. (33) can be used to obtain the saturated value Vrs of the
velocity difference Vr . By using d/dx = 0 (saturated sediment
transport), we obtain

3

4sd
Cd (Vrs)V

2
rs = μg̃, (34)

which can be numerically solved for Vrs .

III. OBTAINING THE FLUX SATURATION LENGTH
OF SEDIMENT TRANSPORT

In this section, we use the results presented in last section in
order to derive a closed expression for the saturation length as a
function of the attributes of sediment and flow for both aeolian
and subaqueous regimes. The derivation of the saturation
length equation is the subject of Sec. III A. In Sec. III B we

present and discuss the resulting equation for the saturation
length. In Secs. III C and III D we show how the saturation
length equation can be applied to compute Ls in the aeolian
and subaqueous regimes, respectively.

A. Derivation

Close to equilibrium, M and V saturate simultaneously
following a certain function M(V ), where Ms = M(Vs). This
function is linked to the characteristics of the erosion and
deposition of bed material and thus to the unknown shape of
(ρ〈vz〉)(ho) as a function of M and V in Eq. (32). Moreover,
also the mean fluid velocity U will saturate following a certain
function U (V ) close to the saturated regime, since U is
influenced by the feedback of the sediment transport on the
fluid flow. Therefore, Eq. (29) becomes

Vr (V ) = U (V ) − V. (35)

By taking into account that both M and U are functions of V ,
and by using Eq. (34), we can rewrite the momentum balance
Eq. (33) in such a way to obtain the following expression for
dV /dx,

dV

dx
= �(V ) = A(V )B[Vr (V )], (36)

where the functions A(V ) and B(V ) are given by the equations

A(V ) = 3M(V )

4sdcacv

[
2V M(V ) + V 2 dM(V )

dV

] , (37)

B(Vr ) = Cd (Vr )V 2
r − Cd (Vrs)V

2
rs . (38)

Furthermore, since Q(V ) = M(V )V , we obtain

dV

dQ
(V ) =

[
M(V ) + V

dM(V )

dV

]−1

. (39)

In this manner, using Eq. (36), �(V ) can be written as

�(V ) = dQ

dx
(V ) =

[
M(V ) + V

dM(V )

dV

]
�(V ). (40)

Using Eqs. (39) and (40), we can write Eq. (2) for the saturation
length as

Ls = −
(

d�

dV

dV

dQ

)−1

V =Vs

= −
(

d�

dV

)−1

V =Vs

, (41)

where we further used that �(Vs) = 0.
Calculating Ls through Eq. (41) requires obtaining an

expression for d�/dV , where �(V ) is defined in Eq. (36).
However, �(V ) incorporates, through the function B(V )
defined in Eq. (38), a dependence on the equilibrium value
of the relative velocity Vr , i.e., Vrs . In order to obtain an
expression for Vrs , we solve Eq. (34) for Vrs using the drag
law of Julien [37] for natural sediment, which is as follows:

Cd (vr ) = 24ν

vrd
+ 1.5, (42)

whereas we find that the specific choice of the drag law
has only a small effect on the value of Ls obtained from
our calculations. By substituting the expression for Cd (Vrs),
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obtained with Eq. (42), into Eq. (34) and solving this equation
for Vrs yields

Vrs =
√

8μsg̃d3 + (24ν)2 − 24ν

3d
. (43)

This equation is then used to compute B(Vr ) through Eq. (38),
whereupon �(V ) can be obtained using Eqs. (35) and (36).
The resulting expression for the saturation length, computed
with Eq. (41), reads

Ls = (2 + cM )cacvVrsVsF

μg̃

[
1 − dU

dV
(Vs)

]−1

, (44)

where the quantity

cM = Vs

Ms

dM

dV
(Vs) (45)

describes the relative change of M with V close to the saturated
regime, while F is given by

F = Cd (Vrs)Vrs

[
d
(
CdV

2
r

)
dVr

]−1

Vr=Vrs

= 24Vrsν/d + 1.5V 2
rs

24Vrsν/d + 3V 2
rs

= Vrs + 16ν/d

2Vrs + 16ν/d
, (46)

and thus F encodes information about the drag law.
In order to obtain our final expression for Ls , we need to

express dU
dV

(Vs). We note that, for the saturated state, the mean
flow velocity U is dominantly a function of the shear velocity
u∗ and the shear velocity at the bed [11,30], that is,

ub = √
τf (ho)/ρf . (47)

The shear velocity at the bed, ub, is reduced due to the feedback
of the sediment transport on the fluid flow, where τf (z) is
the fluid shear stress profile. We can express ub using the
inner turbulent boundary layer approximation of the Navier-
Stokes equations. These equations approximate the Navier-
Stokes equations for heights z much smaller than the height
δb of the boundary layer, which is the region in which we
are interested. George [38] derived the inner boundary layer
approximation of the Navier-Stokes equations in the absence
of an external body force. In the presence of an external body
force, these equations must be slightly modified by adding the
body force term in the momentum equations. The horizontal
momentum equation thus is written as follows [38]:

dτf

dz
= −Fxbody, (48)

where Fxbody(z) is the horizontal body force per unit volume
acting on the flow at each height z. Fxbody is the drag force
per unit volume which the particles apply on the fluid. In
other words, Fxbody is the reaction force per unit volume of the
horizontal force per unit volume which the fluid applies on the
particles. That is,

Fxbody = −ρ
〈
aex

x

〉
. (49)

We then substitute Eq. (49) into Eq. (48) and integrate this
equation from z = ho to z = zcut, where zcut � δb is a height
which incorporates the entire transport layer, thereby using

τf (zcut) = τ = ρf u2
∗ and

∫ zcut

ho
ρ〈aex

x 〉 = ∫ ∞
ho

ρ〈aex
x 〉 = M〈aex

x 〉.
This leads to

τf = τ − M
〈
aex

x

〉
. (50)

By substituting this equation into Eq. (47) and using Eq. (28),
we obtain the following equation for ub:

ub = u∗

√√√√1 − M
〈
aex

x

〉
ρf u2∗

= u∗

√
1 −

3M
4sdca

Cd (Vr )V 2
r

ρf u2∗
. (51)

Since u∗ does not depend on V , we can now express dU
dV

(Vs)
as

dU

dV
(Vs) = cU

Vs + Vrs

ubs

dub

dV
(Vs), (52)

where ubs is the value of ub in equilibrium and the quantity cU

is given by the equation

cU = ubs

Us

dU

dub

(ubs) = ubs

Vs + Vrs

dU

dub

(ubs), (53)

where we used Vrs = Us − Vs . We note that cU describes the
relative change of U with ub close to the saturated regime.
Moreover, the derivative dub

dV
(Vs) can be calculated using

Eq. (51) with M = M(V ), Vr = Vr (V ), and

3Ms

4sdca
Cd (Vrs)V 2

rs

ρf u2∗
= 1 − u2

bs

u2∗
, (54)

which follows from ub(Vs) = ubs . We thus obtain

dub

dV
(Vs) = u2

∗ − u2
bs

2ubs

[
1 − dU

dV
(Vs)

FVrs

− cM

Vs

]
. (55)

This expression is substituted into Eq. (52), whereas the
resulting equation is then solved for [1 − dU

dV
(Vs)]−1; this is

the term involving dU/dV which we need to compute Ls in
Eq. (44). In this manner, we finally obtain a closed expression
for the saturation length, which we present and discuss in the
next subsection.

B. The saturation length equation

The equation for the saturation length, Ls , which is identical
to Eq. (5) of Ref. [26] if the definition of ca [Eq. (30)] is
inserted, reads

Ls = (2 + cM )cacvVrsVsFK

μg̃
, (56)

where Vrs and F are calculated using Eqs. (34) and (46),
respectively. In addition, the last factor K on the right-hand
side of Eq. (56) is given by the equation

K =
[
1 − dU

dV
(Vs)

]−1

=
1 + [

cU (Vs+Vrs )
2FVrs

]( u2
∗

u2
bs

− 1
)

1 + [
cU cM (Vs+Vrs )

2Vs

]( u2∗
u2

bs

− 1
)

�

1 + [
cU (Vs+Vrs )

2FVrs

]( u2
∗

u2
th

− 1
)

1 + cU cM (Vs+Vrs )
2Vs

( u2∗
u2

th
− 1

) , (57)

and K thus encodes information about the saturation of
the transport-flow feedback. In fact, if the saturation of the
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transport-flow feedback is neglected (U = Us), it follows
cU = 0 and thus K = 1. We note that Eq. (57) is identical to
Eq. (9) of Ref. [26], which we obtained for aeolian transport for
cM ≈ cU ≈ 1 (see Sec. III C). Moreover, for transport in the
subaqueous regime, cU ≈ 0, as shown in Sec. III D. Therefore,
in this regime, Eq. (57) gives K ≈ 1, which is the result we
obtained for subaqueous transport in Ref. [26]. In fact, using
the corresponding values for cM and cU and inserting Eq. (30),
Eq. (56) becomes equal to

Lsubaq
s = (2s + 1)cvVsVrsF

μ(s − 1)g
(58)

for subaqueous transport and

Laeolian
s = 3cvVsVrsFK

μg
(59)

for aeolian transport, where we further used (s + 0.5)/(s −
1) ≈ 1 for aeolian transport. Equations (58) and (59) are
identical to Eqs. (8) and (10) of Ref. [26], respectively.

In Eq. (57), we assumed that the saturated shear velocity at
the bed (ubs) and the bed shear stress in equilibrium [τfs(ho)]
approximately equal uth and τth, respectively, i.e., the minimal
shear velocity and the minimal shear stress at which sediment
transport can be sustained,

τfs(ho) = τth, (60)

ubs = uth. (61)

In the following, we present arguments which justify this
assumption.

For aeolian sediment transport, Eqs. (60) and (61) are
known as “Owen’s hypothesis.” These equations are known
to be approximately valid when u∗ is close to the threshold
(e.g., Figure 2.10 in Ref. [6]). However, as u∗ increases, ubs

actually decreases away from uth [6,11]. Nonetheless, the
approximation which we use in Eq. (57) is reasonable even
for large shear velocities, since, when u∗ is significantly larger
than uth (which means u∗ > 2uth for Earth conditions with
cM = cU = 1), we have that

K �
Vs

cMFVrs

, (62)

which is nearly independent of ubs. Using this approximation
with cM ≈ 1, Eq. (59) becomes

Laeolian
s = 3cvV

2
s

μg
, (63)

which is identical to Eq. (39) of the supplementary material of
Ref. [26].

For subaqueous sediment transport, Eqs. (60) and (61) are
known as “Bagnold’s hypothesis.” This hypothesis is widely
used in the literature (e.g., Refs. [32–34,39]), although some
studies have questioned it (e.g., Refs. [28,40]). However,
there is evidence from recent studies that this hypothesis is
approximately fulfilled. In order to review this evidence, we
use Eqs. (28), (34), and (50) to express Ms as

Ms = ca

μg̃
[τ − τf s(ho)]. (64)

To our knowledge, the only study in which Ms has been
measured as a function of τ is the recent study of Lajeunesse

et al. [41], who obtained, using video-imaging techniques that

Ms = 1

0.415g̃
(τ − τth) . (65)

Therefore, if we assume τfs(ho) = τth as in Eq. (60), then,
by comparing Eqs. (64) and (65) with ca = 1.19 valid for
subaqueous sediment transport [cf. Eq. (30) with s = 2.65],
we obtain μ/ca = 0.415 and thus μ � 0.493. Indeed, values
within the range between μ/ca = 0.3 and μ/ca = 0.5—and
thus consistent with the value of μ estimated above—have
been reported from measurements of particle trajectories in the
subaqueous sediment transport [42–44]. Further evidence that
Bagnold’s hypothesis is approximately correct was provided
by the recent numerical study of Durán et al. [30]. These
authors simulated the dynamics of both the sediment bed and
of transported particles at the single particle scale. Durán
et al. [30] found that Msg̃ ∝ (τ − τth), which is similar to
Eq. (65) and can satisfactorily explain all simulated data
with a single proportionality constant. Moreover, the authors
also found that τf s reduces to τth at a height z very close
to the top of the bed, z � ho. Given these separate lines of
evidence, we believe that Bagnold’s hypothesis is a reasonable
approximation. Moreover, we emphasize that our analysis
for subaqueous sediment transport is not affected by this
approximation, since we estimate in Sec. III D 2 that cU ≈ 0
and thus K ≈ 1 regardless of the value of ubs.

In summary, the saturation length of sediment flux, Ls ,
can be calculated using Eq. (56), where Vrs and F are given
by Eqs. (43) and (46), respectively, while Eq. (57) is used
to compute the term [1 − dU

dV
(Vs)]−1, which appears on the

right-hand side of Eq. (56). These equations include certain
quantities which depend on the characteristics of the sediment
transport and thus on the transport regime. These quantities
are cv , cM , cU , μ, the saturated particle velocity Vs , and the
threshold shear velocity, uth. We estimate these quantities for
the aeolian regime of sediment transport in Sec. III C and for
the subaqueous regime in Sec. III D.

C. The saturation length of aeolian sediment transport

In this section, we estimate the parameters cv , cU , cM , and μ,
and express the saturated particle velocity Vs and the threshold
shear velocity uth for aeolian sediment transport. Note that we
estimate these parameters only roughly, which is sufficient in
the light of the large scatter (factor 2–4) of the experimental
data [20,21].

1. The parameter cv

In this section, we reiterate some of the results we obtained
in Sec. A1 of the supplementary material of Ref. [26]. The
parameter cv [Eq. (26)] occurs as a prefactor in Eq. (56) and
thus determines the magnitude of Ls . Since

〈(vx − 〈vx〉)2〉 = 〈
v2

x

〉 − 〈vx〉2
> 0, (66)

we conclude that cv must be larger than unity, that is,

cv =
〈
v2

x

〉
〈vx〉2 > 1. (67)
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However, experiments on aeolian sediment transport [45] show
that the change of 〈vx〉(z) with z is small close to ho, where
most of the transport takes place. Consequently, the value of
cv must be close to unity.

We estimate cv from experiments on aeolian sediment trans-
port [45,46]. Creyssels et al. [45] measured an exponentially
decaying particle concentration profile,

ρ(z) = ρ(ho)e−(z−ho)/zρ , (68)

and a linearly increasing particle velocity profile,

〈vx〉(z) = 〈vx〉(ho) + m(z − ho), (69)

where zρ ≈ 10 mm, 〈vx〉(ho) ≈ 1 m/s, and m ≈ 70 s−1 were
not varying much with u∗. Using these measurements, we
obtain

cv =
〈
v2

x

〉
〈vx〉2 =

〈
v2

x

〉
〈vx〉2

〈vx〉2

〈vx〉2 =
〈
v2

x

〉
〈vx〉2

∫ ∞
ho

ρdz
∫ ∞
ho

ρ〈vx〉2dz( ∫ ∞
ho

ρ〈vx〉dz
)2

=
〈
v2

x

〉
〈vx〉2

{
1 +

[
mzρ

〈vx〉(ho) + mzρ

]2}
≈ 1.17

〈
v2

x

〉
〈vx〉2

. (70)

In order to obtain cv , it remains to estimate 〈v2
x〉/〈vx〉2. In order

to do so, we use measurements of Greeley et al. (Fig. 13 of
Ref. [46]), who reported a histogram of the horizontal particle
velocity of the particles located at a height zh = ho + 2cm,
from which we obtain 〈

v2
x

〉
(zh)

〈vx〉2(zh)
≈ 1.1. (71)

Since the shape of the distribution of the horizontal particle
velocity does not vary much with the height [47], we thus
estimate cv as

cv ≈ 1.17

〈
v2

x

〉
〈vx〉2

≈ 1.17

〈
v2

x

〉
(zh)

〈vx〉2(zh)
≈ 1.3. (72)

2. The parameter cU

In contrast to cv , the parameter cU [Eq. (53)] significantly
influences the functional shape of Ls as a function of u∗. cU

characterizes the significance of the transport-flow feedback
for the saturation of the sediment flux. For instance, cU = 0
means that the transport-flow feedback does not affect the
saturation process since the flow is already saturated [U = Us

from Eq. (53)].
In order to estimate cU , we need to know how the mean fluid

speed U behaves as a function of the feedback-reduced bed
shear velocity ub [see Eq. (53)]. For aeolian sediment transport,
the fluid speed is strongly suppressed by the reaction drag
forces which the transported grains apply on the wind. The
feedback is, in fact, so strong that the mean fluid speed in the
transport layer changes only weakly with u∗ [11]. In leading-
order approximation, the mean fluid speed is thus proportional
to ub,

U ≈ Usub

uth
. (73)

We thus obtain, from Eq. (53),

cU ≈ 1. (74)

We note that a value of cU close to unity is obtained even if
the more complicated dependence of U on ub, obtained from
modeling saturated sediment flux [11], is taken into account.
Equation (74) is approximately valid for u∗ < 4uth [11].
Beyond this range, turbulence-induced fluctuations of the shear
velocity, neglected in the present work, should affect the value
of cU .

3. The parameter cM

The parameter cM , given by Eq. (45), occurs as a prefactor
in Eq. (56) and it further affects the functional shape of Ls(u∗)
since cM itself affects the feedback term, [1 − dU

dV
(Vs)]−1. cM

encodes the relative importance of the respective relaxation
processes M → Ms and V → Vs for the saturation of the
sediment flux. There are two extreme cases: cM = 0 and
cM → ∞. The case cM = 0 means that the saturation of M

towards Ms is much faster than the saturation of V towards Vs ,
while the opposite situation corresponds to the case cM → ∞.

In order to estimate cM for the aeolian regime of sediment
transport, we first estimate how the function M(V ) behaves
close to the saturated regime. For this purpose, we make use
of the fact that, for aeolian sediment transport, the dominant
mechanism which brings grains of the sediment bed into
motion is the ejection of bed grains due to impacts of already
transported grains, a mechanism known as “splash” (see, e.g.,
Refs. [11,48–50]). It is known that ejection of new grains is
mainly due to the impacts of the fastest transported particles,
whereas the impacts of slow particles have a negligible
effect on the splash process [48,50,51]. Indeed, the speed
of a fast impacting grain mainly determines the number of
ejected grains, but not their ejection velocities, as found in
experiments [52,53]. The ejected particles are typically slow
compared to the rebound speed of the impacting particle. In
other words, the impact of a fast grain naturally results in two
species of particles: a single (fast) rebounding particle and
many ejected (slow) particles.

Using numerical simulations of splash and particle trajecto-
ries, Andreotti [51] could observe these two distinct species in
the characteristics of transported particles. The author noted
that the slow species (“reptons”) accounts for the majority
of transported mass per unit soil area (M). Furthermore, the
author’s analysis suggested that the impact flux of reptons,
and thus, in good approximation, the total transported mass
M , adjusts to changes of the impact flux of the fast species
(“saltons”) within a distance much shorter than Ls . Therefore,
it seems reasonable to treat M as locally equilibrated with
respect to the impact flux of saltons. The locally equilibrated
value Meq of M is proportional to the number of ejected
particles per impact, which in turn is proportional to the impact
speed of saltons [48] and thus approximately proportional to
V . A rough estimate of the function M(V ) is therefore

M ≈ Meq ≈ MsV

Vs

, (75)

which yields

cM ≈ 1. (76)
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4. The Coulomb friction coefficient, μ

The Coulomb friction coefficient, μ, occurs as a prefactor
in Eq. (56) and also changes the functional shape of Ls through
Eq. (43). μ can be determined indirectly from measurements
of the saturated mass of transported particles Ms as a function
of the shear velocity u∗, which fulfills the equation [11,30]

Ms = caρf

μg̃

(
u2

∗ − u2
th

)
. (77)

Note that this equation is Eq. (64) with τfs(ho) = τth [Eq. (60)].
The value

μ ≈ 1 (78)

was found in a previous work [11] through determining μ

indirectly both from experiments as mentioned above and
from numerical simulations of aeolian sediment transport in
equilibrium.

5. The saturated particle velocity Vs

The saturated particle velocity Vs is dominantly controlling
the dependence of Ls on u∗ in Eq. (56). Since the dependence
of Vs on u∗ is rather weak for aeolian sediment transport [11],
the saturation length Ls will not change much with u∗. Here we
use an expression for Vs which has been obtained in a recent
work [11], since the values of saturated sediment flux obtained
using this equation produced excellent quantitative agreement
with measurements [11]. The expression for Vs reads [11]

Vs = Vth + 3ut

2κ
ln

(
Vs

Vth

)
+ u∗

κ
Fγ

(
uth

u∗

)
, (79)

where Vt and Fγ (x) are given by the equations

Vth = Vo + ηVrs

1 − η
with Vo = 16.2

√
g̃d + 6ζ

πρpd
, (80)

Fγ (x) = (1 − x) ln(1.78γ ) + 0.5(1 − x2)E1(γ )

+ 1.154(1 + x ln x)(1 − x)2.56. (81)

In these equations, E1(x) is the exponential integral function,
κ = 0.4 is the von Kármán constant, and ζ = 5 × 10−4N/m is
a dimensional parameter encoding the influence of cohesion,
while η = 0.1 and γ = 0.17 are empirically determined
parameters [11]. The saturated particle velocity Vs for transport
in the aeolian regime can be obtained by iteratively solving
Eq. (79) for Vs and using the expressions for Vth and Fγ (x)
given by Eqs. (80) and (81), respectively.

6. The threshold shear velocity uth

We calculate the threshold shear velocity uth by using the
following equation, which has been obtained from an analyti-
cal model for aeolian sediment transport in equilibrium [11],

uth = κ(Vrs + Vo)

(1 − η) ln (zmt/zo)
, (82)

where zmt is given by the following equation [11]:

zmt = βγV
1
2

rsV
3
2

t

μg̃
. (83)

In the equation above, β = 0.095 is an empirically determined
parameter [11], while zo, which is the surface roughness of the
quiescent sediment bed, is given by the equation [11,54]

zo = d exp(−κB), with
(84)

B = 8.5 + (2.5 ln Rp − 3) exp[−0.11(ln Rp)2.5],

where Rp = uthd

ν
. We note that the ratio between uth (which is

the threshold for sustained transport) and the fluid threshold
uft required to initiate transport in the aeolian regime depends
strongly on the environmental conditions. Equation (82) yields
uth ≈ 0.8uft for Earth conditions, which is in agreement with
measurements [1]. However, the ratio uth/uft under Martian
conditions can be as small as 10%, as also found from
numerical simulations [6,55]. Indeed, Eq. (82), which was
obtained from the same theoretical work leading to Eq. (79),
has been validated by comparing its prediction with outcomes
of numerical simulations [48] under a wide range of fluid-to-
sediment density ratio and particle diameter, thereby leading to
excellent quantitative agreement (see Fig. 13(b) of Ref. [11]).

D. The saturation length of subaqueous sediment transport

In this section, we provide expressions for the parameters
cv , cU , and cM , as well as for the Coulomb friction coefficient,
μ, the saturated particle velocity, Vs , and the threshold shear
velocity, uth, for transport in the subaqueous regime. We
remark that we estimate these quantities only in a rough
manner, consistent with the large scatter (factor 2–4) of the
experimental data.

1. The parameter cv

In this section, we reiterate some of the results we obtained
in Sec. A2 of the supplementary material of Ref. [26].
We can estimate cv for transport in the subaqueous regime
from measurements of the distribution Pv(vx) of horizontal
velocities vx in subaqueous sediment transport in equilibrium.
Such measurements were undertaken by Lajeunesse et al.
in experiments of sediment transport under water using
particles of average diameter d = 2.24 mm and relative shear
velocity u∗/uth = 2.1 [41]. In these experiments, particles
were considered as being transported if they had a velocity
larger than a certain cut-off value, vc [41]. The distribution of
horizontal velocities for these transported particles was fitted
using an exponential distribution,

Pv(vx) = 1

Vf

exp

(
−vx − vc

Vf

)
, (85)

where Vf ≈ 110 mm/s. By using this distribution, we can
compute cv as

cv =
∫ ∞
vc

v2
xPv(vx)dvx[ ∫ ∞

vc
vxPv(vx)dvx

]2 =
1 + (

1 + vc

Vf

)2

(
1 + vc

Vf

)2 . (86)

Lajeunesse et al. did not report specific values of vc

corresponding to specific measurements [41]. Instead they
mentioned that vc lies within the range between 10 mm/s
and 30 mm/s, depending on the water flow rate. Since
d = 2.24 mm and u∗/uth = 2.1 [which are the values reported
for the measurement of Pv(vx)] correspond to intermediate
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values for d and u∗/uth investigated in the experiments [41],
we use the intermediate value vc = 20 mm/s as an approximate
estimate for the average cut-off velocity. Using this estimate
for vc, Eq. (86) yields

cv ≈ 1.7, (87)

for transport in the subaqueous regime.

2. The parameter cU

In contrast to the aeolian regime, the suppression of the fluid
flow due to the sediment transport in the subaqueous sediment
transport is weak [30]. The mean fluid speed U is thus mainly
a function of the shear velocity u∗ and the dependence of U on
ub and thus on V is negligible. By neglecting this dependence,
we obtain

cU ≈ 0, (88)

which is a consequence of Eq. (53) with dU/dub ≈ 0.

3. The parameter cM

In order to estimate cM for subaqueous sediment transport,
we use evidence provided by the recent numerical study of
Durán et al. [30]. As mentioned before, these authors simulated
the dynamics of both the transported particles and the sediment
bed at the single-particle scale. Durán et al. [30] found that,
during flux saturation in subaqueous sediment transport, M

changes within a time scale which is more than one order of
magnitude larger than the time scale in which Q changes. This
observation can be mathematically expressed as∣∣∣∣V dM

dt

∣∣∣∣ �
∣∣∣∣dQ

dt

∣∣∣∣ , (89)

and thus ∣∣∣∣V dM

dt

∣∣∣∣ �
∣∣∣∣M dV

dt

∣∣∣∣ . (90)

Equation (90) further implies that∣∣∣∣ V

M

dM

dV

∣∣∣∣ � 1, (91)

and thus

|cM | � 1, (92)

where we used the definition of cM , which is given by Eq. (45).
Hence, we estimate cM as

cM ≈ 0. (93)

However, we note that our model predictions are consistent
with experiments even if we assume a coupling of M to V

which is as strong as in the aeolian regime, that is, even by
assuming cM = 1 and thus increasing Ls by a factor of 1.5 as
compared to the value obtained with cM = 0 [26]. This means
that the saturation length in the subaqueous regime is not very
sensitive to the value of cM within the range between 0 and 1
(whereas the latter value corresponds to sediment transport in
the aeolian regime).
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FIG. 1. (Color online) Average value of the dimensionless fluid
speed Us

sg̃d
= Vs+Vrs

sg̃d
as a function of the dimensionless shear velocity

u∗
sg̃d

. For the symbols, the average dimensionless particle speed Vs

sg̃d

was obtained from measurements [41], while we computed Vrs using
Eq. (43) with μ = 0.493. The black solid line corresponds to the best
fit to the experimental data using Eq. (96), which yields a ≈ 4.6.

4. The parameter μ

In this section, we reiterate some of the results we obtained
in Sec. B of the supplementary material of Ref. [26]. As
obtained in experiments on subaqueous sediment transport in
equilibrium, the average mass flux Ms approximately follows
the expression [41]

Ms = ca

0.415g̃
(τ − τth) . (94)

By comparing this equation with Eq. (64) with τf o = τth and
ca = 1.19 (see Sec. III B), we obtain

μ ≈ 0.493 (95)

for sediment transport in the subaqueous regime.

5. The saturated particle velocity Vs

It has been verified in a large number of experimental
studies [32,33,40,41,56–58], that the equilibrium particle
velocity in the subaqueous regime of transport approximately
follows the expression,

Vs = au∗ − Vrs, (96)

where a is a dimensionless number. We note that the above
expression is consequence of the equation Vs = Us − Vrs ,
where Us is taken proportional to u∗. In order to obtain Vs for
sediment transport in the subaqueous regime using Eq. (96), we
calculate Vrs using Eq. (43) and use the value a ≈ 4.6, which
we have obtained by comparing the prediction of Eq. (96) with
measurements of Vs as a function of u∗ from experiments on
subaqueous sediment transport in equilibrium [41] (see Fig. 1).
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6. The threshold shear velocity uth

The threshold velocity for sustained sediment transport, uth,
in the subaqueous regime is computed by using the equation

uth =
√

�thsg̃d, (97)

where the threshold Shields parameter �t is obtained through
an empirical fit to the Shields diagram [59]. The resulting
expression for �t reads [59]

�th = 0.273

1 + 1.2D∗
+ 0.046(1 − 0.576e−0.02D∗ ), (98)

where D∗ = d 3
√

sg̃/ν2.

IV. DEPENDENCE OF THE SATURATION LENGTH ON
PARTICLE SIZE AND FLUID SHEAR VELOCITY

In order to understand the morphodynamics of sediment
landscapes under water and on planetary surfaces, it is
important to understand the behavior of the flux saturation
length as a function of the relevant attributes of sediment
and fluid. In particular, the size of planetary dunes can
serve as a proxy for the saturation length of extraterrestrial
dune fields, which can be used to infer the local fluid
shear velocity (u∗) and average size (d) of the constituent
sediment [5,6,60,61]. In fact, the dependence of Ls on u∗
has been subject of intense debate in previous theoretical
works [18,20–22,60]. It is therefore useful to perform in this
section a systematic study of the saturation length as a function
of these two relevant parameters under different environmental
conditions.

A. The saturation length as a function of the fluid
shear velocity, u∗

Figure 2 shows the dependence of Ls/(sd) on u∗/uth for
aeolian sediment transport on Earth (brown solid line) and
Mars (red dashed line) and for sediment transport under water
(blue dash-dotted line) computed using Eq. (56) for particles
with mean diameter d = 250 μm. The behavior of Ls with
u∗ as predicted from Eq. (56) is in clear contrast to the
scaling relation Ls ≈ 2sd proposed in previous works [19–22].
This approximate scaling, which includes no dependence of
Ls on u∗, was obtained by assuming that the acceleration
of transported particles due to fluid drag is the dominant
relaxation mechanism and by neglecting the entrainment
of sediment bed particles due to fluid lift as well as the
entrainment of sediment bed particles and the deceleration
of transported particles resulting from grain-bed collisions.
In our more comprehensive model for saturation of sediment
flux, however, all these aforementioned relaxation processes
are taken into account. There are two main reasons for the
disparity in the behavior of Ls with u∗ as observed in our
model and in the model of Refs. [19–22].

First, our expression involves a significant dependence of
Ls on u∗/uth due to the dependence of Ls on the average
particle velocity Vs and the feedback term K [see Eq. (57)],
both of which are functions of u∗/uth. In particular, for the
subaqueous regime, Vs is a strongly increasing function of
u∗/uth, thus explaining the strong increase of Ls with u∗/uth

in this regime. Furthermore, we see in Fig. 2 that in our
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FIG. 2. (Color online) Dimensionless saturation length Ls/(sd)
versus dimensionless shear velocity u∗/uth for particles with
mean diameter d = 250 μm, computed using Eq. (56). The brown
solid line corresponds to aeolian sediment transport on Earth
(ρp = 2650 kg/m3, ρw = 1.2 kg/m3, g = 9.81 m/s2, ν = 1.5 ×
10−5 m2/s), the red dashed line corresponds to aeolian sediment
transport on Mars (ρp = 3000 kg/m3, ρw = 0.0185 kg/m3, g =
3.71 m/s2, ν = 6.4 × 10−4 m2/s), and the blue dash-dotted line
corresponds to subaqueous sediment transport under water (ρp =
2650 kg/m3, ρw = 1000 kg/m3, g = 9.81 m/s2, ν = 10−6 m2/s).
Moreover, the black dotted line shows Ls = 2sd as proposed by
Refs. [19–22].

model the dependence of Ls on u∗ in the aeolian regime
is small but not negligible as suggested in the model of
Refs. [19–22]. Indeed, the dependence of Ls on Vs and K

is a consequence of considering grain-bed collisions and the
transport-flow feedback, respectively, for the saturation of
the sediment mass flux Q—both neglected in the models of
Refs. [19–22]. Second, in contrast to the models proposed
in these works, our model considers the dependence of
the drag coefficient Cd on the particle Reynolds number,
Rep = Vrsd/ν [see Eq. (28)]. As can be seen in Fig. 2,
the difference between the particle Reynolds numbers on
Earth (Rep ≈ 30) and Mars (Rep ≈ 1) results in an order-of-
magnitude difference between Ls/(sd) on these two planetary
bodies, which occurs because the normalized particle velocity
Vs/

√
sg̃d increases strongly with Rep when Rep is of order

unity [11].
It can also be seen in Fig. 2 that the saturation length Ls

on Mars decreases with u∗ when u∗ is sufficiently close to uth,
even though Vs increases with u∗ in this regime. This surprising
behavior is a consequence of the feedback term K , which, for
Mars conditions, decreases with u∗ sufficiently close to uth

and thus overcompensates the tendency of Ls to increase with
Vs . In contrast, for Earth conditions, the feedback term K

increases with u∗ close to uth. This qualitative difference in
the change of K with u∗ between Earth and Mars conditions
can be understood by noting that

Vs

cMFVrs

< 1 (99)

052213-11
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FIG. 3. (Color online) Normalized saturation length Ls/(sd) versus mean particle diameter d for three shear velocities, namely u∗ =
uth, u∗ = 2uth, and u∗ = 4uth, computed using Eq. (56). The brown solid line corresponds to aeolian sediment transport on Earth (ρp =
2650 kg/m3, ρw = 1.2 kg/m3, g = 9.81 m/s2, ν = 1.5 × 10−5 m2/s), the red dashed line corresponds to aeolian sediment transport on Mars
(ρp = 3000 kg/m3, ρw = 0.0185 kg/m3, g = 3.71 m/s2, ν = 6.4 × 10−4 m2/s), and the blue dash-dotted line corresponds to subaqueous
sediment transport under water (ρp = 2650 kg/m3, ρw = 1000 kg/m3, g = 9.81 m/s2, ν = 10−6 m2/s). Moreover, the black dotted line shows
Ls = 2sd as proposed by Refs. [19–22].

for Mars conditions with sufficiently small u∗/uth, while for
Earth conditions (and for Mars conditions with sufficiently
large u∗/uth) the following relation holds:

Vs

cMFVrs

> 1. (100)

The physical origin for the difference in the behavior of
K with u∗ mentioned above lies in the mechanics of the
reduction of the fluid speed due to sediment transport (see
Sec. III A). The fluid velocity in the transport layer (U )
decreases with the average drag force applied by the fluid onto
the transport layer [ 3M

4sdca
Cd (Vr )V 2

r ]. This average drag force in
turn is proportional to both the mass density M of transported
particles and to the acceleration term Cd (Vr )V 2

r . Recalling that
cM ≈ 1 in the aeolian regime, we have that, close to saturation,
both M and V are smaller (if Q < Qs) or larger (if Q > Qs)
than their respective saturated values, Ms and Vs . Hence, if
M < Ms (M > Ms), it follows that Cd (Vr )V 2

r > Cd (Vrs)V 2
rs

[Cd (Vr )V 2
r < Cd (Vrs)V 2

rs], which means that the mass density
and the acceleration term deviate from their saturated values in
opposite directions. The average drag force applied by the fluid
onto the transport layer [ 3M

4sdca
Cd (Vr )V 2

r ] thus can be both larger
(under Mars conditions for sufficiently small u∗/uth) or smaller
(under both terrestrial and Martian conditions for sufficiently
large u∗/uth) than its saturated value. Consequently, the fluid
velocity in the transport layer (U ) can be smaller or larger
than its saturated value Us , depending on whether Eq. (100)
or Eq. (99), respectively, is fulfilled. Further, if U > Us

[Eq. (99)], then K < 1 and thus the saturation length Ls

decreases in comparison to the situation in which the saturation
of feedback is neglected (K = 1). In contrast, if U < Us

[Eq. (100)], K > 1 and thus the saturation length Ls increases
in comparison to K = 1. The deviation of K from K = 1
becomes stronger with increasing u∗/uth because the effect of
the sediment transport on the fluid velocity increases with

u∗/uth. This explains why the feedback term K can both
increase or decrease with u∗/uth.

B. Dependence of the saturation length on the
average particle size (d)

Figure 3 shows the dependence of Ls/(sd) on d for aeolian
sediment transport on Earth (brown solid line) and Mars (red
dashed line) and for subaqueous sediment transport (blue
dash-dotted line), computed using Eq. (56) for different values
of the fluid shear velocity, namely u∗ = uth, u∗ = 2uth, and
u∗ = 4uth. It can be seen that the rescaled saturation length
Ls/(sd) displays a complex behavior with d. The dependence
of Ls/(sd) on d is controlled by two main factors: the
dependence of the drag coefficient and of the Shields parameter
on the particle Reynolds number (Rep) and the dependence
of the saturation of the sediment flux on the transport-flow
feedback. The significance of each one of these factors for
the dependence of the saturation length on the average grain
diameter depends on the transport regime, as we will discuss
in the next paragraphs.

1. Subaqueous regime of transport

The change in the transport-flow feedback due to the
saturation of the flux is negligible in the subaqueous regime,
since in this regime cU ≈ 0 and thus K ≈ 1. This behavior
explains why all curves Ls/(sd) versus d in Figs. 3(a)–3(c)
corresponding to transport under water display the same
qualitative behavior independent of u∗. In each of these curves,
Ls/(sd) first increases with d, reaches a maximum, and finally
approaches a constant value. The origin of this behavior is
that Ls is proportional to VrsVsF [cf. Eq. (56)], and thus its
dependence on the grain size is determined by the behavior
of VrsVsF with d. For sufficiently large particle diameters
d (large Rep), both the drag coefficient Cd and the Shields
parameter �th are approximately independent of d, and thus
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both Vrs/
√

sg̃d and Vs/
√

sg̃d are roughly independent of
d [see Eq. (43), as well as Eqs. (96) and (97) for constant
u∗/uth], while F ≈ 0.5 [see Eq. (46)]. Hence, Ls/(sd) is nearly
independent of d for sufficiently large particle diameters in the
subaqueous regime. However, for smaller particle diameters d

(smaller Rep), both Cd and �t, and thus Vrs/
√

sg̃d, Vs/
√

sg̃d

and F , incorporate a dependence on d. In this regime,
Vrs/

√
sg̃d increases with d, whereas both Vs/

√
sg̃d and F

decrease with d. The increase of Vrs/
√

sg̃d with d thereby
dominates the behavior of Ls/(sd) for small particle diameters,
while the decrease of Vs/

√
sg̃d and F with d dominates the

behavior of the saturation length with d for large particle
diameters.

2. Aeolian regime under terrestrial conditions

The same qualitative behavior of Ls/(sd) with d observed
in the subaqueous regime occurs for aeolian sediment transport
on Earth at shear velocities close to the threshold, as can
be seen in Fig. 3(a). Two main factors dictate the observed
dependence of Ls/(sd) on d for aeolian transport under
terrestrial conditions. First, close to the threshold, the fluid
velocity is almost undisturbed by the particle transport, since
only a few particles are transported. Hence, the feedback
term K associated with the aeolian regime of transport under
terrestrial conditions when u∗ is close to threshold for sustained
transport, uth, is close to unity, as it is in the subaqueous regime.
Second, Vrs/

√
sg̃d, Vs/

√
sg̃d and F behave qualitatively in

the same manner with d as they do in the subaqueous regime.
Therefore, also Ls/(sd) for aeolian transport under terrestrial
conditions with u∗ close to uth depends on d in the same manner
as it does in the subaqueous regime. In contrast, for large
shear velocities, the qualitative behavior of Ls/(sd) with d

observed for aeolian sediment transport on Earth qualitatively
differs from the one observed in the subaqueous regime [see
Figs. 3(b) and 3(c)]. This is because the saturation of the
transport-flow feedback for aeolian sediment transport plays
a relevant role for large u∗. In this regime, the approximation
K ≈ 1 is not valid anymore; instead the feedback term K

follows Eq. (62). Consequently, Ls is proportional to V 2
s and

not to VrsVsF . Since Vs/
√

sg̃d decreases with d before it
reaches an approximately constant value, so does Ls/(sd), as
can be seen in Figs. 3(b) and 3(c).

3. Aeolian regime under Martian conditions

For aeolian transport under Martian conditions, Ls/(sd)
shows a qualitative behavior with d that differs from the
one of aeolian transport under terrestrial conditions. The
origin of this discrepancy is a different qualitative behavior
of the normalized average particle velocity Vs/

√
sg̃d , as

we explain in the following. In aeolian sediment transport,
the average velocity of particles impacting and leaving the
sediment bed (Vo) is nearly independent of properties of the
fluid [6,7,11,45,47,48,51,55,62]. Rather, Vo is largely con-
trolled by the characteristics of the sediment bed, for instance,
by cohesive interparticle forces. These forces increase in
importance with decreasing particle size [6]. Due to these
forces, Vo/

√
g̃d increases with decreasing d [see Eq. (80)].

At the same time, as already mentioned, Vrs/
√

sg̃d increases

with d. Both Vo/
√

sg̃d and Vrs/
√

sg̃d control the normalized
average particle velocity Vs/

√
sg̃d [see Eqs. (79) and (80)].

The qualitative difference between aeolian sediment trans-
port on Earth and Mars is due to Vo/Vrs being approximately
2.5 times larger on Earth than on Mars. This difference in
the scaling of Vo/Vrs implies that the decreasing trend of
Vo/

√
sg̃d with d has a smaller effect on the saturation length

for Martian conditions than it does for Ls under terrestrial
conditions. Indeed, while the value of Vs/

√
sg̃d of aeolian

transport under terrestrial conditions decreases with d (due
to the decrease of Vo/

√
sg̃d with d), the Martian value of

Vs/
√

sg̃d increases with d. This behavior, which is opposite
to the one of terrestrial transport, is due to the increase of
Vrs/

√
sg̃d with d—except for small particle diameters for

which Vrs/
√

sg̃d becomes much smaller than Vo/
√

sg̃d.
The complex behavior of the saturation length Ls plotted

in Figs. 2 and 3 suggests that both the entrainment of sediment
bed particles by fluid lift and grain-bed collisions, and the
momentum change of saltating particles due to drag and grain-
bed collisions, have a considerable influence on the saturation
of the sediment flux. Thus, these relaxation mechanisms of
the sediment flux probably cannot be neglected as done in
previous studies [18–22,24]. Moreover, the relaxation of U ,
which has also been neglected in previous studies, seems
to play a significant role in the saturation length of aeolian
sediment transport, for which the feedback term K [Eq. (57)]
does not vanish since cU ≈ cM ≈ 1. In fact, for sufficiently
large u∗, the feedback term K follows Eq. (62), which means
that Ls scales with V 2

s instead of scaling with VrsVsF for small
u∗. Hence, our study suggests that the saturation of U cannot
be neglected for aeolian sediment transport.

V. CONCLUSIONS

In conclusion, we have presented a model for flux saturation
in sediment transport which, for the first time, accounts for
both relevant relaxation processes of sediment flux identified
in previous works (namely the saturation of the mass density of
transported particles and the relaxation of particle velocities) as
well as for the different types of sediment entrainment prevail-
ing under different environmental conditions. Furthermore,
our model accounts for the saturation transient of the fluid
velocity within the transport layer, which is associated with
the saturation of the transport-flow feedback inherent to the
interaction between the fluid and the particles in transport.
The main outcome of our analytical treatment is a closed
expression for the saturation length of sediment transport, Ls

[Eq. (56)], which can be used to calculate Ls under different
environmental conditions corresponding to both subaqueous
and aeolian regimes of sediment transport. In particular, Ls

predicted from our equation is a complex function of the grain
diameter, d, and of the fluid shear velocity, u∗. This behavior
is in contrast with the scaling of Ls with sd [19–22], which
was obtained from a simplified model that considers only the
relaxation of particle velocity and thus neglects the dependence
of Ls on u∗ observed in experiments [23].

While the purpose of the present work was to introduce
our theoretical model for flux saturation and to present
the analytical derivation of our universal equation for the
saturation length, in a separate work [26] we show that this
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equation consistently predicts the saturation length in different
physical environments. Indeed, our saturation length equation
is in good quantitative agreement with direct measurements of
Ls in a wind tunnel, as well as with indirect estimates of Ls

from the size of subaqueous ripples and dunes on Earth, Mars,
and Venus.

In future studies, our equation can be used to predict
the scale of dunes under different extraterrestrial environ-
ments [26] or to infer attributes of sediment and flow in
planetary dune fields from the minimal size of barchan dunes or
from the wavelength of “elementary” dunes emerging on dense
sand beds. Moreover, our equation can be used to calculate
the saturation length in the morphodynamic dune model of
Ref. [5], which couples a continuum model for sediment
transport with an analytical model for the average turbulent
fluid shear stress over mildly sloped topographies [63,64].
Our equation can further improve morphodynamic models
in hydraulic engineering applications in which the saturation
length is usually treated as an adjustable parameter [65,66].

The importance of the saturation length for such models has
been debated among engineers [67–69], and it was concluded
that even at fluvial scale the influence of sediment transport
saturation was significant [69]. We thus anticipate that the
present work can provide substantial contributions to several
areas of the geological, planetary, and engineering sciences.
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