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Scaling properties of granular materials
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Given an assembly of viscoelastic spheres with certain material properties, we raise the question how the
macroscopic properties of the assembly will change if all lengths of the system, i.e. radii, container size etc.,
are scaled by a constant. The result leads to a method to scale down experiments to lab size.
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Assume the dynamics of a certain granular systims The normal forceF" can be subdivided into elastic and
known. Will the dynamics change if we rescale all sizes by adissipative part&"=Fg+ Fjj [2]. The elastic force for col-
constant factore, i.e., R'=aR;, but leaving the material liding spheres is given by Hertz’s laj3]
properties unchangdd]? If scaling affects the system prop-

erties, how do we have to modify the material properties to no2Y JRE 302 g3 @)
assure that the syste@and the scaled syste® behave e 3(1-17) —e
identically?

It is frequently desired to investigate large scale phenomwith Reﬁ:RiRj /(R+R;)) andY, v being the Young modulus
ena in granular systems experimentally, such as geophysicand the Poisson ratio. Equati¢?) also defines the prefactor
effects or industrial applications. To this end one has to res« that we will need below.
cale all lengths of the system to meet the restrictions of the The formulation of the dissipative part of the forég;
laboratory size, i.e. big boulders in the original system be-depends on the mechanism of damping. Here we will focus
come centimeter sized particles in the experiment. Of coursen viscoelastic damping that is the most simple assumption
one wishes that the effects that occur in the large systerfor dissipatively colliding bodie§4]. It implies that the elas-
occur equivalently in the scaled system too. With the astic part of the stress tensor is a linear function of the defor-
sumption of viscoelastic particle deformation we will show mation tensor and the dissipative part of the stress tensor is a
that naive scaling will modify the properties of a granularlinear function of the deformation rate tensor. It is valid if
system such that the original system and the scaled systethe characteristic velocitthe impact ratey) is much smaller
might reveal quite different dynamic properties. To guaranthan the speed of soundin the material and the viscous
tee equivalent dynamical properties of the original and theelaxation timer,;s is much smaller than the duration of the
scaled systems we have to modify the material properties inollisions 7. [5]. The range of the viscoelastic model is,
accordance with the scaling factor and we have to redefineence, limited from both sides: the collisions should not be
the unit of time. too fast to assurg<<c, 7,is<7., and not too slow to avoid

As another consequence of the scaling properties wefluences of surface effects as adhesion. For viscoelastically
claim that for numerical simulations of granular material it is colliding spheres the dissipative part of the normal force
not sufficient to provide relative data such as, e.g., to dereads[5-7]
scribe the container size in units of the particle diameter. We
will show an example where the dynamics of a granular sys- En —AE iF” —§A \/—E
tem changes significantly with system size, although all rela- ds— " dt dg ¢ 2 K §dt
tive sizes are kept constant.

In a simple approximation, a granular system may be deThe dissipative material constaftis a function of the vis-
scribed as an assembly of spheres of r&diii=1,...N. If cous constantsy,,, the Young modulug’ and the Poisson
two particles of radiiR; andR; at positions’; andf; touch,  ratio v (for details se¢5]),
ie., if &§=R+R;—|Fi—Fj|>0, they feel an interaction

3

force _1@B7— 7% (1-»)(1-2v) @
3 3772+2771 YVZ )
If”- =F{if;+ F}] fij , (1) Combining the force$2) and(3) one obtains the equation
of motion

with the unit vector in normal direction;=(f;—r;)/ d?¢ k[ 4, 3 —dE)
|Fj—Fi| and the respective unit vector in tangential direction a2 T met g EA\/EE =0, ®)
f ij - Eventually, external forces as, e.g., gravity, may also act
on the particles. with m*f=mm;/(m+m;) and with the initial conditions

&i—o=0 anddé/dt|,—o=g. i
In dimensionless variableg=¢/¢,, m=t/79, EQ. (5)
*URL: http://summa.physik.hu-berlin.d&ies/ reads[ 8]

1063-651X/2001/64.)/0113084)/$20.00 64 011308-1 ©2001 The American Physical Society



POSCHEL, SALUENA, AND SCHWAGER

4

with €|,_o=0 andd¢/d7|,_,=1. The characteristic length
&, is the maximal compression for the equivalent undampe
(elastig problem that can be found by equating the kinetic
energy of the impacm®"g%/2 and the elastic energy at the
instant of maximal compressionkZ3%/5. As characteristic
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tem S’ must run by a factow faster (or slowe) than the

clock in the original system. In other words, if in the original
system we observe a phenomenon at time 00 s, we will

find the same effect in the scaled system at tide
T Ja100s. Scaling of time is a direct consequence of scal-

ing the lengths if the constant of gravity has the same value
in both systems.
In the scaled system the equation of motion of a particle

contact reads

time 7o we define the time in which the distance between the

particles changes by the characteristic length just before the

collision startg 9]

5 meff

d2§/ K ,
avz " (memy (£)

K/

(M’

3 dé¢’
32 A > —
+5A dev 0. (11

2/5
gOE(Z _) g¥s  1o=4&,/9. (7) If we apply our scaling relations that were introduced above,
K ie.,
The o_nIy term in Eq(6_) that dep_end_s explicitly on t_he sys- , d¢’ dé  d%¢  d%
tem size and on material properties is the prefactor in front of &'=aé, av - ﬁm, R (12
the third term. If the scaling procedure affects the value of
this term it will change the dynamics of the system. To eN-e obtain
sure identical behavior of the scaled system, however, be-
sides the identity of this prefactor, further requirements have d2 ' 3 ' d
- - § s K L K ¢
to be met that will be discussed below. W+ a W)_’g + EaA W)—, \/Ea:o. (13

Expanding our abbreviations we obtain

K
Al —#
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R

with p being the material density. The functidgh(R;,R;

collects all terms containing; andR; :

[RR/(Ri+R;)]"
[RPRY/(R’+R) 12"

F(Ri,R)= C)

Scaling the radii bye, the functionF scalesF(R/,R;
=F(aR;,aR))=a 'F(R,R;). Obviously, simple scaling
of the system in general affects the prefactor @&j.already

via the scaling properties &f(R; ,R;), hence, in general the

original system and the system where the lengths have bee

scaled by a factow differ in their dynamic properties. More

explicitly, one can show that naively scaling the system by a

factor «<1 will lead to a comparatively more damped dy-
namics.

To provide equivalent dynamical properties of the sys-

tems, therefore, we have to modify the material pmpert'esrl%iven that accelerations are invariant under scaling. This re-

a way to assure that the equations of motion of both syste
are equivalent, which in turn assures that the prefa¢8)rsf
the original system and the scaled system are identical.

One of the few things that cannot be modified in exper
ments with reasonable effort is the constant of gra@ty
That implies that going fron$to S’ not only G but all other
accelerations must remain unaffected too,

(d2x> ' d¥(ax)  d*x
dtz] — d(tH?  dtZ’ (10

yieldingt’ = \/at. Hence, scaling all lengths = ax implies
that times scale a8’ =/at if we require that the gravity
constant stays unaffected. Thus, the clock in the scaled sy

Comparing with Eq.(5) we find the conditions to assure
identity of the equations of motion,

!

K — ,— 32 K r_
ey =@ e A’'=aA. (14)

Using the definitions ok [Eq. (2)] andm®" yields finally

(p( ),: A'= A

If we choose material constants that obey EHG$) we will
obtain the original equation of motion after scaling the sys-
tem back to its original size, i.e., both systems are equivalent.
n When we incorporate the tangential foréé into the
analysis, of course, we have to require that this force scales
in the same way as any other force, namely,

Y
1—17)

Y
“o(1=v7)"

(15

(Ft)l Ft
(me )[:W, (16)

uirement has to be met by appropriately scaling the material
constants, particularly the friction constant, resulting in an
additional scaling equation. Its form depends on the under-
lying friction model, i.e., on the functional dependence of the
tangential force on the geometry and the material properties
as well as on the compression and the relative velocity. For
instance, if we assume the most simple tangential force law

(17

with w being the friction coefficient we can conclude that the
friction coefficient has to be invariant with respect to scaling

F'=puF",

s- w' = (18)
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TABLE |. Material parameters used in the simulations. 1
Samples Original Scaled | Scaled Il 08 r
c
Plane length 10 m 62.5 cm 160 m '% 0.6
Particle diameter 10 cm 6.25 mm 160 cm %
p 2 glen? 2 glen? 2 glen? S 04
8 GPy 0.5 GPa 128 GPa 3 scaled up x 49
(1-19) 0.2
A 2x107°s 5x10°°s 8x10°°s o
Iz 01 0.1 01 0 50 100 150 200 250 300

height (cm, 16 cm, cm/16, cm/49)

In literature, one can find a variety of different models FIG. 2. Density profile of the flow down an inclined plane.
that might be more realistic for the description of the dynam-Thick solid line: original system together with scaled systems | and
ics of a granular materigfor an overview see, e.g[10]). Il (oy=1/16, ), = 16, correct scaling, parameters see Tahl§he
Applying the same procedure for these laws will result incurves collapse precisely to one single line. Dashed line: scaled
different scaling relations and, hence, in different conditionssystem Il,a= 1/16 (incorrect scaling dot-dashed line: scaled sys-
of the type Eq(18). A thorough discussion of the scaling of tem, «a=16 (incorrect scaling Thin-solid line: system incorrectly
more realistic tangential friction laws will be published else-Scaled bya=49. For the scaled systems, the horizontal axis has
where. been multiplied by 161), 1/16(ll), and 1/49.

To demonstrate the derived scaling laws, we present re- ) ]
sults of a two-dimensional molecular dynamics simulationdnd by a=16 only applied to lengths leads to a more elastic
of stationary flow of 1000 particles down an inclined plane.dynamics, i.e., comparatively more dilute fldaot-dashed
In the “original system” the length of the plane is 10 m Curvein Fig. 2. Thls effect is ampl|f_|ed V\_/hen Iarggr sca_llng
(periodic B.C), its slope is 15°, and the particle diametersfactors are applied=49), where in twice the simulation
have been randomly chosen with an average of 10 cm. Th#me, no steady state is found while the density profile keeps
material parameters are given in Table I. Particles are sug€laxing towards more dilute states. The instantaneous den-
jected to normal viscoelastic forces as well as tangentia$ity Profile is shown as a thin-solid curve in Fig. 2, as an
forces(of the simple type discussed abgveat, although not indication t_hat incorrect scaling can ultimately lead to com-
very realistic, is enough for the purpose of showing the scalPletély deviated results. . _
ing properties. Figure 1 shows a snapshot of the flow. The simulations show that the simple length scaling Qf a

The solid curve in Fig. 2 represents the density profiledranular system by a constant factechanges the dynami-
perpendicular to the inclined plane of the original system an@@l properties significantly, if the material parameters are
of the correctly scaled systems | and II, taking into accounKept constant. In order to obta!n identical re_sults for a scaled
the necessary modification of the material parameters a&yStém one has also to modify the material constants and
cording to Eqs(15) and(18). The modified material param- redefine the_ un|t.of time. These necessary scaling relations
eters are summarized in Table I. It is not surprising that alfr® summarized in Table II. . _
three lines collapse perfectly, since in scaled variables the The knowledge about these scaling relations offers the
equations of motion of the original system and the correctlyP0Ssibility to scale down real world systems, e.g., geophysi-
scaled system are identical. Therefore, particle trajectorie§@l Or industrial granular systems, to sizes where laboratory
and, hence, the density plot must be identical. experiments can be performed. If one sqa_les down .such a

Figure 2 also shows two curves for the stationary densityranular system one has to replace the original material by a
profile of the systems scaled hy=1/16 (system } and « material that meets the scaling requirements discussed in the
=16 (system 1) where only the lengths have been scaled buf€Xt: _ _ -
erroneously the material parameters have been kept constant V& want to give an example: Assume in the 8”9'”?2' SYys-
(incorrect scaling These curves deviate from the profile of tem one deals with steel spher€g=20.6<10"" Nm™?,
the original systems since the original and the scaled systems

obey different equations of motion. As anticipated, the scal- TABLE Il. The necessary scaling relations when transiting from
a granular systenS) to a scaled systemS() having identical dy-

namic properties.

Original system Scaled system
All lengths X aX
Time t Jat
Elastic constant Y Y
p1=17) “p1-1?
Dissipative constant A JaA

FIG. 1. Snapshot of the granular flow down an inclined plane.
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»=0.29 andp=7700 kgn13) of average radiuR=10cm ~ One can imagine_that not for all scaling faqtqrsne wjll

and system size of =10m. The property whose scaling find a proper materllal, however, nowadays it is _possmle_to

behavior is known i&//(p(1— v?))=2.92x 10’ m?s~2. One manufacture matgarlals that can meet demanding require-
ments, such as high softness along with a custom-designed

h damping constant.

The scaling properties have also consequences for mo-
lecular dynamics simulations of granular systems: namely, it
'és not sufficient in simulations to providelative parameters
such as the container size in units of the particle radius. As
demonstrated, the result of a simulati@md, of course, also
of a real world experimeihtdepends orabsolutevalues.

wishes to know (to measurg a certain value at time
t=100s. In the lab we perform the experiment wit
an equivalent system of siz€ =1 m, i.e., we scale the sys-
tem by the factorr=0.1, including all radii. From the scal-
ing relations we see that we have to find a material whos
scaled property i&'/(p’ (1—»'?))~0.3x 10’ m*s 2. From
tables [11] we find that we can use plexiglaséY
=0.32<10'°Nm~2, »=0.35 andp=1200kg m3) in order

to obtain this value. Therefore, we have to perform the ex-

periment with plexiglass spheres and have to measure the This work was supported by the Deutsche Forschungsge-
value of interest at tim¢' =31.6s. meinschaft via Grant Nos. PO 472/6-1 and PO 472/7-1.
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