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Scaling properties of granular materials
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Given an assembly of viscoelastic spheres with certain material properties, we raise the question ho
macroscopic properties of the assembly will change if all lengths of the system, i.e. radii, container size
are scaled by a constant. The result leads to a method to scale down experiments to lab size.
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Assume the dynamics of a certain granular systemS is
known. Will the dynamics change if we rescale all sizes b
constant factora, i.e., Ri8[aRi , but leaving the materia
properties unchanged@1#? If scaling affects the system prop
erties, how do we have to modify the material properties
assure that the systemS and the scaled systemS8 behave
identically?

It is frequently desired to investigate large scale pheno
ena in granular systems experimentally, such as geophy
effects or industrial applications. To this end one has to r
cale all lengths of the system to meet the restrictions of
laboratory size, i.e. big boulders in the original system
come centimeter sized particles in the experiment. Of cou
one wishes that the effects that occur in the large sys
occur equivalently in the scaled system too. With the
sumption of viscoelastic particle deformation we will sho
that naive scaling will modify the properties of a granu
system such that the original system and the scaled sy
might reveal quite different dynamic properties. To guara
tee equivalent dynamical properties of the original and
scaled systems we have to modify the material propertie
accordance with the scaling factor and we have to rede
the unit of time.

As another consequence of the scaling properties
claim that for numerical simulations of granular material it
not sufficient to provide relative data such as, e.g., to
scribe the container size in units of the particle diameter.
will show an example where the dynamics of a granular s
tem changes significantly with system size, although all re
tive sizes are kept constant.

In a simple approximation, a granular system may be
scribed as an assembly of spheres of radiiRi , i 51,...,N. If
two particles of radiiRi andRj at positionsrW i and rW j touch,
i.e., if j i j [Ri1Rj2urW i2rW j u.0, they feel an interaction
force

FW i j 5Fi j
n nW i j 1Fi j

t tW i j , ~1!

with the unit vector in normal directionnW i j [(rW j2rW i)/
urW j2rW i u and the respective unit vector in tangential directi
tW i j . Eventually, external forces as, e.g., gravity, may also
on the particles.

*URL: http://summa.physik.hu-berlin.de/~kies/
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The normal forceFn can be subdivided into elastic an
dissipative partsFn5Fel

n 1Fdis
n @2#. The elastic force for col-

liding spheres is given by Hertz’s law@3#

Fel
n 5

2Y

3~12n2!
AReffj3/2[kj3/2, ~2!

with Reff5RiRj /(Ri1Rj) and Y, n being the Young modulus
and the Poisson ratio. Equation~2! also defines the prefacto
k that we will need below.

The formulation of the dissipative part of the forceFdis
n

depends on the mechanism of damping. Here we will fo
on viscoelastic damping that is the most simple assump
for dissipatively colliding bodies@4#. It implies that the elas-
tic part of the stress tensor is a linear function of the def
mation tensor and the dissipative part of the stress tensor
linear function of the deformation rate tensor. It is valid
the characteristic velocity~the impact rateg! is much smaller
than the speed of soundc in the material and the viscou
relaxation timetvis is much smaller than the duration of th
collisions tc @5#. The range of the viscoelastic model i
hence, limited from both sides: the collisions should not
too fast to assureg!c, tvis!tc , and not too slow to avoid
influences of surface effects as adhesion. For viscoelastic
colliding spheres the dissipative part of the normal for
reads@5–7#

Fdis
n 5A

dj

dt

d

dj
Fel

n 5
3

2
AkAj

dj

dt
. ~3!

The dissipative material constantA is a function of the vis-
cous constantsh1/2, the Young modulusY and the Poisson
ratio n ~for details see@5#!,

A5
1

3

~3h22h1!2

3h212h1

~12n!~122n!

Yn2 . ~4!

Combining the forces~2! and~3! one obtains the equatio
of motion

d2j

dt2
1

k

meff S j3/21
3

2
AAj

dj

dt D50, ~5!

with meff5mimj /(mi1mj) and with the initial conditions
ju t5050 anddj/dtu t505g.

In dimensionless variables,ĵ[j/j0 , t[t/t0 , Eq. ~5!
reads@8#
©2001 The American Physical Society08-1
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d2ĵ

dt2 1
5

4
ĵ3/21

3

2 S 5

4D 3/5

AS k

meffD 2/5

g1/5Aĵ
dĵ

dt
50, ~6!

with ĵut5050 anddĵ/dtut5051. The characteristic length
j0 is the maximal compression for the equivalent undam
~elastic! problem that can be found by equating the kine
energy of the impactmeffg2/2 and the elastic energy at th
instant of maximal compression 2kj0

5/2/5. As characteristic
time t0 we define the time in which the distance between
particles changes by the characteristic length just before
collision starts@9#

j0[S 5

4

meff

k D 2/5

g4/5, t0[j0 /g. ~7!

The only term in Eq.~6! that depends explicitly on the sys
tem size and on material properties is the prefactor in fron
the third term. If the scaling procedure affects the value
this term it will change the dynamics of the system. To e
sure identical behavior of the scaled system, however,
sides the identity of this prefactor, further requirements h
to be met that will be discussed below.

Expanding our abbreviations we obtain

AS k

meffD 2/5

g1/55~2p!22/5AF~Ri ,Rj !g
1/5S Y

r~12n2! D
2/5

,

~8!

with r being the material density. The functionF(Ri ,Rj )
collects all terms containingRi andRj :

F~Ri ,Rj ![
@RiRj /~Ri1Rj !#

1/5

@Ri
3Rj

3/~Ri
31Rj

3!#2/5 ~9!

Scaling the radii bya, the function F scalesF(Ri8 ,Rj8)
5F(aRi ,aRj )5a21F(Ri ,Rj ). Obviously, simple scaling
of the system in general affects the prefactor Eq.~8! already
via the scaling properties ofF(Ri ,Rj ), hence, in general the
original system and the system where the lengths have b
scaled by a factora differ in their dynamic properties. More
explicitly, one can show that naively scaling the system b
factor a,1 will lead to a comparatively more damped d
namics.

To provide equivalent dynamical properties of the s
tems, therefore, we have to modify the material propertie
a way to assure that the equations of motion of both syst
are equivalent, which in turn assures that the prefactors~8! of
the original system and the scaled system are identical.

One of the few things that cannot be modified in expe
ments with reasonable effort is the constant of gravityG.
That implies that going fromS to S8 not onlyG but all other
accelerations must remain unaffected too,

S d2x

dt2 D 8
5

d2~ax!

d~ t8!2 5
d2x

dt2
, ~10!

yielding t85Aat. Hence, scaling all lengthsx85ax implies
that times scale ast85Aat if we require that the gravity
constant stays unaffected. Thus, the clock in the scaled
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tem S8 must run by a factora faster ~or slower! than the
clock in the original system. In other words, if in the origin
system we observe a phenomenon at timet5100 s, we will
find the same effect in the scaled system at timet8
5Aa100 s. Scaling of time is a direct consequence of sc
ing the lengths if the constant of gravity has the same va
in both systems.

In the scaled system the equation of motion of a parti
contact reads

d2j8

dt82 1
k8

~meff!8
~j8!3/21

3

2
A8

k8

~meff!8
Aj8

dj8

dt8
50. ~11!

If we apply our scaling relations that were introduced abo
i.e.,

j85aj,
dj8

dt8
5Aa

dj

dt
,

d2j8

dt82 5
d2j

dt2
, ~12!

we obtain

d2j

dt2
1a3/2

k8

~meff!8
j3/21

3

2
aA8

k8

~meff!8
Aj

dj

dt
50. ~13!

Comparing with Eq.~5! we find the conditions to assur
identity of the equations of motion,

k8

~meff!8
5a23/2

k

meff , A85AaA. ~14!

Using the definitions ofk @Eq. ~2!# andmeff yields finally

S Y

r~12n2! D 8
5a

Y

r~12n2!
, A85AaA. ~15!

If we choose material constants that obey Eqs.~15! we will
obtain the original equation of motion after scaling the s
tem back to its original size, i.e., both systems are equival

When we incorporate the tangential forceFt into the
analysis, of course, we have to require that this force sc
in the same way as any other force, namely,

~Ft!8

~meff!8
5

Ft

meff , ~16!

given that accelerations are invariant under scaling. This
quirement has to be met by appropriately scaling the mate
constants, particularly the friction constant, resulting in
additional scaling equation. Its form depends on the und
lying friction model, i.e., on the functional dependence of t
tangential force on the geometry and the material proper
as well as on the compression and the relative velocity.
instance, if we assume the most simple tangential force

Ft5mFn, ~17!

with m being the friction coefficient we can conclude that t
friction coefficient has to be invariant with respect to scali

m85m. ~18!
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SCALING PROPERTIES OF GRANULAR MATERIALS PHYSICAL REVIEW E64 011308
In literature, one can find a variety of different mode
that might be more realistic for the description of the dyna
ics of a granular material~for an overview see, e.g.,@10#!.
Applying the same procedure for these laws will result
different scaling relations and, hence, in different conditio
of the type Eq.~18!. A thorough discussion of the scaling o
more realistic tangential friction laws will be published els
where.

To demonstrate the derived scaling laws, we present
sults of a two-dimensional molecular dynamics simulatio
of stationary flow of 1000 particles down an inclined plan
In the ‘‘original system’’ the length of the plane is 10 m
~periodic B.C.!, its slope is 15°, and the particle diamete
have been randomly chosen with an average of 10 cm.
material parameters are given in Table I. Particles are s
jected to normal viscoelastic forces as well as tangen
forces~of the simple type discussed above! that, although not
very realistic, is enough for the purpose of showing the sc
ing properties. Figure 1 shows a snapshot of the flow.

The solid curve in Fig. 2 represents the density pro
perpendicular to the inclined plane of the original system a
of the correctly scaled systems I and II, taking into acco
the necessary modification of the material parameters
cording to Eqs.~15! and~18!. The modified material param
eters are summarized in Table I. It is not surprising that
three lines collapse perfectly, since in scaled variables
equations of motion of the original system and the correc
scaled system are identical. Therefore, particle trajecto
and, hence, the density plot must be identical.

Figure 2 also shows two curves for the stationary den
profile of the systems scaled bya51/16 ~system I! and a
516 ~system II! where only the lengths have been scaled
erroneously the material parameters have been kept con
~incorrect scaling!. These curves deviate from the profile
the original systems since the original and the scaled syst
obey different equations of motion. As anticipated, the sc

FIG. 1. Snapshot of the granular flow down an inclined plane

TABLE I. Material parameters used in the simulations.

Samples Original Scaled I Scaled II

Plane length 10 m 62.5 cm 160 m
Particle diameter 10 cm 6.25 mm 160 cm
r 2 g/cm3 2 g/cm3 2 g/cm3

Y

~12n2!

8 GPa 0.5 GPa 128 GPa

A 231025 s 531026 s 831025 s
m 0.1 0.1 0.1
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ing by a516 only applied to lengths leads to a more elas
dynamics, i.e., comparatively more dilute flow~dot-dashed
curve in Fig. 2!. This effect is amplified when larger scalin
factors are applied (a549), where in twice the simulation
time, no steady state is found while the density profile ke
relaxing towards more dilute states. The instantaneous d
sity profile is shown as a thin-solid curve in Fig. 2, as
indication that incorrect scaling can ultimately lead to co
pletely deviated results.

The simulations show that the simple length scaling o
granular system by a constant factora changes the dynami
cal properties significantly, if the material parameters
kept constant. In order to obtain identical results for a sca
system one has also to modify the material constants
redefine the unit of time. These necessary scaling relat
are summarized in Table II.

The knowledge about these scaling relations offers
possibility to scale down real world systems, e.g., geoph
cal or industrial granular systems, to sizes where labora
experiments can be performed. If one scales down suc
granular system one has to replace the original material b
material that meets the scaling requirements discussed in
text.

We want to give an example: Assume in the original s
tem one deals with steel spheres~Y520.631010 Nm22,

FIG. 2. Density profile of the flow down an inclined plan
Thick solid line: original system together with scaled systems I a
II ~a I51/16,a II 516, correct scaling, parameters see Table I!. The
curves collapse precisely to one single line. Dashed line: sc
system II,a51/16 ~incorrect scaling!, dot-dashed line: scaled sys
tem, a516 ~incorrect scaling!. Thin-solid line: system incorrectly
scaled bya549. For the scaled systems, the horizontal axis
been multiplied by 16~I!, 1/16 ~II !, and 1/49.

TABLE II. The necessary scaling relations when transiting fro
a granular system~S! to a scaled system (S8) having identical dy-
namic properties.

Original system Scaled system

All lengths x ax
Time t Aat
Elastic constant Y

r~12n2!
a

Y

r~12n2!

Dissipative constant A AaA
8-3
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PÖSCHEL, SALUEÑA, AND SCHWAGER PHYSICAL REVIEW E64 011308
n50.29 andr57700 kg m23! of average radiusR̄510 cm
and system size ofL510 m. The property whose scalin
behavior is known isY/„r(12n2)…52.923107 m2 s22. One
wishes to know ~to measure! a certain value at time
t5100 s. In the lab we perform the experiment wi
an equivalent system of sizeL851 m, i.e., we scale the sys
tem by the factora50.1, including all radii. From the scal
ing relations we see that we have to find a material wh
scaled property isY8/„r8(12n82)…'0.33107 m2 s22. From
tables @11# we find that we can use plexiglass~Y
50.3231010Nm22, n50.35 andr51200 kg m23! in order
to obtain this value. Therefore, we have to perform the
periment with plexiglass spheres and have to measure
value of interest at timet8531.6 s.
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One can imagine that not for all scaling factorsa one will
find a proper material, however, nowadays it is possible
manufacture materials that can meet demanding requ
ments, such as high softness along with a custom-desig
damping constant.

The scaling properties have also consequences for
lecular dynamics simulations of granular systems: namely
is not sufficient in simulations to providerelativeparameters
such as the container size in units of the particle radius.
demonstrated, the result of a simulation~and, of course, also
of a real world experiment! depends onabsolutevalues.

This work was supported by the Deutsche Forschungs
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