Giant fluctuations at a granular phase separation threshold

Baruch Meerson, Thorsten Pöschel, Pavel V. Sasorov, and Thomas Schwager

1Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
2Institut für Biochemie, Charité, Monbijoustrasse 2, 10117 Berlin, Germany
3Institute of Theoretical and Experimental Physics, Moscow 117218, Russia

(Received 15 August 2002; revised manuscript received 3 September 2003; published 27 February 2004)

We investigate a phase separation instability that occurs in a system of nearly elastically colliding hard spheres driven by a thermal wall. If the aspect ratio of the confining box exceeds a threshold value, granular hydrodynamics predict phase separation: the formation of a high-density region coexisting with a low-density region along the wall that is opposite to the thermal wall. Event-driven molecular dynamics simulations confirm this prediction. The theoretical bifurcation curve agrees with the simulations quantitatively well below and well above the threshold. However, in a wide region of aspect ratios around the threshold, the system is dominated by fluctuations, and the hydrostatic theory breaks down. Two possible scenarios of the origin of the giant fluctuations are discussed.

DOI: 10.1103/PhysRevE.69.021302 PACS number(s): 45.70.Qj

I. INTRODUCTION

Dynamics of a system of inelastically colliding hard spheres have attracted a great deal of recent interest [1,2], in particular in the context of validity of kinetic theory and hydrodynamics of rapid granular flow developed in the 1980s [3]. Hydrodynamics looks ideally suitable for a description of large-scale patterns observed in rapid granular flows: a plethora of clustering phenomena [4], vortices [5], oscillons [6], shocks [7], etc., that are difficult to understand in the language of individual particles. However, a first-principles derivation of a universally applicable continuum theory of granular gas is not a simple task, even in the dilute regime. The validity of hydrodynamic description in general, and the accuracy of constitutive relations in particular, can be conveniently checked on symmetry-breaking instabilities that are abundant in rapid granular flows. The example of a symmetry-breaking instability that we consider in this work deals with a very simple setting: a two-dimensional (2D) system of nearly elastically colliding hard spheres, confined by a rectangular box and driven by a thermal sidewall at zero gravity. The setting is described in detail in Sec. II. The basic steady state here is the “stripe state”: a stripe of enhanced density at the wall opposite to the driving wall [10]. In the continuum language, the stripe state is uniform in the lateral direction, by which we mean the direction parallel to the driving wall. Within a certain range of parameters (delineated below), steady-state equations of granular hydrodynamics predict spontaneous symmetry-breaking instability of the stripe state, when the aspect ratio of the confining box exceeds a certain threshold [13–16]. The instability leads to phase separation: the development of “droplets” (high-density domains) coexisting with “bubbles” (low-density domains). For very large aspect ratios of the box, this symmetry-breaking instability has been recently observed in event-driven molecular dynamics (EMD) simulations, and described by a phenomenological continuum model [17]. The present work is devoted to a more detailed investigation of the phase separation instability in the range of aspect ratios comparable to the threshold value. We employ, in Sec. III, the equations of granular hydrodynamics (or rather hydrostatics) to compute the supercritical bifurcation curve for the phase separation instability. Then we report, in Sec. IV, on extensive EMD simulations that show that this bifurcation curve is quantitatively accurate well below and well above
the threshold value of the aspect ratio. Unexpectedly, the
hydrostatic theory fails in a relatively wide region of aspect
ratios around the threshold value, where the system is found
to exhibit giant fluctuations. In an attempt to get insight into
the mechanism of this anomaly, we investigate, also in Sec.
IV, the dependence of the magnitude of fluctuations on the
total number of particles in the system. A summary and dis-
cussion of our results is presented in Sec. V.

II. MODEL SYSTEM AND HYDROSTATIC EQUATIONS

Let \( N \) hard spheres of diameter \( d \) and mass \( m = 1 \) move in
a 2D rectangular box \( L_x \times L_y \). The inelasticity of particle
collisions is parametrized by a constant coefficient of normal
restitution \( r \). Particle collisions with three of the walls are
elastic. The fourth, thermal wall is located at \( x = L_x \). Upon
collision with it, the normal component of the particle ve-
ocity is drawn from a Maxwell distribution with temperature
\( T_0 \) [10], while the tangential component of the particle ve-
cocity is preserved.

Working in the nearly elastic limit \( 1 - r^2 \ll 1 \) and employ-
ing the Navier-Stokes hydrodynamics [3], we introduce the
number density \( n(\mathbf{r}, t) \), granular temperature \( T(\mathbf{r}, t) \), and
mean-flow velocity \( \mathbf{v}(\mathbf{r}, t) \). Energy input at the thermal wall
can be balanced by the dissipation due to interparticle colli-
sions. Therefore, we assume that the system reaches a zero-
mean-flow steady state \( \mathbf{v} = 0 \), and is therefore describable
by the simple momentum and energy balance equations:

\[
p = \text{const}, \quad \nabla \cdot (\kappa \nabla T) = I.
\] (1)

Here \( p \) is the pressure, \( \kappa \) is the thermal conductivity, and \( I \) is
the rate of energy loss by collisions. The hydrostatic equa-
tions (1) should be supplemented by constitutive relations:
\( p, \kappa, \) and \( I \) in terms of \( n \) and \( T \). These relations are derivable
systematically only in the dilute limit [3,18]. Being inter-
ested in moderate densities, we shall employ the well-known
constitutive relations by Jenkins and Richman [20], which
account for excluded particle volume. In the nearly elastic
limit one can neglect the inelasticity correction terms in \( p \) and \( \kappa \),
as well as the small density gradient term, propor-
tional to \( 1 - r \), in the heat flux [19].

Equations (1) can be rewritten in terms of a single vari-
able: the scaled inverse density \( z(x,y) = n_{\text{c}}/n(x,y) \), where
\( n_{\text{c}} = 2/(\sqrt{3}d^2) \) is the hexagonal close-packing density. In
scaled coordinates \( \mathbf{r}/L_x = \mathbf{r} \), the box dimensions become \( 1 \times \Delta \),
where \( \Delta = L_y / L_x \) is the box aspect ratio. We obtain [15]

\[
\nabla \cdot [F(z) \nabla z] = \eta Q(z),
\] (2)

where \( F(z) = A(z)B(z) \),

\[
A(z) = \left[ 1 + \frac{9 \pi}{16} \left( 1 + \frac{2}{3G} \right) \right]^2 \frac{z^{1/2}(1 + 2G)^{3/2}}{z^{1/2}(1 + 2G)^{3/2}},
\]

\[
B(z) = 1 + 2G + \frac{\pi}{\sqrt{3}} \left( \frac{z + \frac{\pi}{16\sqrt{3}}}{z - \frac{\pi}{2\sqrt{3}}} \right)^2.
\]

\[
Q(z) = \frac{6}{\pi} \frac{z^{1/2}G}{(1 + 2G)^{3/2}},
\]

\[
G = G(z) = \frac{\pi}{2\sqrt{3}} \left( \frac{z - \frac{7\pi}{32\sqrt{3}}}{z - \frac{\pi}{2\sqrt{3}}} \right)^2.
\] (3)

and \( \eta = (2\pi/3)(1-r)(L_x/d)^2 \) is the hydrodynamic inelastics
ity parameter. Introducing \( \psi(x,y) = \int_0^z F(z')dz' \), we arrive
at the following equation:

\[
\nabla^2 \psi = \eta \tilde{Q}(\psi),
\] (4)

where \( \tilde{Q}(\psi) = Q[z(\psi)] \) (in the following the symbol \( \tilde{~} \) is
omitted). The boundary conditions are

\[
\frac{\partial \psi}{\partial x} \bigg|_{x=0} = \frac{\partial \psi}{\partial y} \bigg|_{y=1} = \frac{\partial \psi}{\partial y} \bigg|_{y=-\Delta/2} = \frac{\partial \psi}{\partial y} \bigg|_{y=\Delta/2} = 0.
\] (5)

Finally, the number of particles is conserved:

\[
\frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} \int_0^z \nabla \cdot F(z')dz'dy = \frac{N}{L_x L_y n_c} = f.
\] (6)

The hydrostatic problem (4)–(6) is fully determined by three
scaled parameters: the area fraction \( f \), \( \eta \), and \( \Delta \). Notice that
the steady-state density distributions are independent of \( T_0 \) as
the hard-sphere model does not introduce any intrinsic en-
ergy scale.

III. STRIPE STATE, SYMMETRY-BREAKING
INSTABILITY, AND BIFURCATION CURVE

The trivial steady state of the system is a laterally uniform
cluster of particles located at the wall \( x = 0 \), opposite to the
thermal wall [10]; see Fig. 1. This state will be called the
stripe state. In the language of hydrodynamics, it is described
by the \( y \)-independent solution of Eqs. (4)–(6); we shall de-
note it by \( z = Z(x) \), correspondingly \( \psi = \Psi(x) \).

It was predicted that, in a wide region of the parameter
space \((f, \eta, \Delta)\), the stripe state should give way, by a
symmetry-breaking bifurcation (either supercritical or sub-
critical), to a laterally asymmetric state [13–16]. For very
large aspect ratios \( \Delta \), this phase separation instability has
been observed in EMD simulations [17]. For a laterally
asymmetric steady state one can write

\[
\psi(x,y) = \Psi(x) + \sum_n \varphi_n(x) \exp(inky),
\] (7)
FIG. 1. The stripe state for \( \eta = 10.050 \) and \( f = 0.025 \). We show the scaled density vs scaled coordinate \( x \) obtained (a) by solving numerically Eqs. (4)–(6) in one dimension (line) and (b) in EMD simulation with \( N = 2 \times 10^4 \) particles for \( \Delta = 0.1 \) (squares). The inset shows a snapshot of the system from the EMD simulation (the hot wall is on the right). Because of a finite image resolution the particle number density in this and other snapshots may look higher than it is.

where \( \varphi_{-n}(x) = \varphi_n^+(x) \). What happens close to the supercritical bifurcation point? Here the leading terms are those with \( n = \pm 1 \), while \( \varphi_0 = \varphi_1^-, \varphi_2 = \varphi_1^+, \varphi_3 = \varphi_1^1_2 \), etc. The bifurcation point itself can be found from the linear eigenvalue problem

\[
\varphi_{1k}'' - \eta Q \varphi_{1k} - k_c^2 \varphi_{1k} = 0, \quad (8)
\]

\[
\varphi_{1k}(0) = 0 \quad \text{and} \quad \varphi_{1k}(1) = 0, \quad (9)
\]

which was analyzed in Refs. [13–15]. Here

\[
Q \varphi(x) = F^{-1}dQ/dz|_{z=z(x)}.
\]

For given \( \eta \) and \( f \), one obtains the eigenvalue \( k = k_c(\eta,f) \) and corresponding eigenfunction \( \varphi_{1k}(x) \). The modes with \( k < k_c(\eta,f) \) are unstable. Within a spinodal interval \( f_1(\eta) < f < f_2(\eta) \), the effective lateral compressibility of the gas is negative, and this is the mechanism of the instability [15,17]. At \( \eta > 1 \), there is a range of \( f \) such that \( k_c \) and \( \varphi_{1k}(x) \) become insensitive to the precise form of the boundary conditions at the driving wall. This is the universal “localization regime,” when the eigenfunction \( \varphi_{1k}(x) \) is exponentially localized at the wall opposite to the driving wall [13,15]. The spinodal interval exists for \( \eta_c < \eta < \infty \); it shrinks to zero at \( \eta = \eta_c = 344.3 \) [17,21]. It has been recently shown, for a different boundary condition at the driving wall, that the bifurcation from the stripe state to a phase separated state is supercritical within some density interval \( f_- < \eta < f_+ \), which is located within the spinodal interval. On each of the intervals \( f_1 < f < f_- \) and \( f_+ < f < f_2 \), the bifurcation is subcritical [16].

As we have already noted, the present work focuses on the phase separation via a supercritical bifurcation. To obtain the asymptotics of the supercritical bifurcation curve close to onset, one should go to the second order of the perturbation theory and take into account, in Eq. (7), the terms \( n = 0, \pm 1, \) and \( \pm 2 \). In this way one obtains three linear ordinary differential equations, presented in Ref. [16], where the same problem was solved for a different boundary condition at the driving wall. The solvability condition for these equations [22] yields the bifurcation curve: \( A \) versus \( k_c^2 - k^2 \). The amplitude \( A \) can be uniquely defined by the relation

\[
\varphi(x) = A \Phi_0(x) + A |A|^2 \delta \varphi(x),
\]

where \( \Phi_0(x) \) is the solution of Eqs. (8) and (9) such that \( \Phi_0(0) = 1 \), while \( \delta \varphi(x) = O(1) \). This yields

\[
A(k_c^2 - k^2) = CA|A|^2,
\]

where \( C = \text{const} \). The trivial solution \( A = 0 \) describes the stripe state, while the nontrivial one, \( k_c^2 - k^2 = C|A|^2 \), describes the bifurcated state. The constant \( C \) can be computed numerically. \( C > 0(<0) \) corresponds to supercritical (subcritical) bifurcation. We present here the resulting bifurcation curve for \( Y_c \), the (normalized) \( y \) coordinate of the center of mass of the granulate,

\[
Y_c = \frac{\int_0^1 dx \int_{-\Delta/2}^{\Delta/2} y n(x,y) dy}{\Delta \int_0^1 dx \int_{-\Delta/2}^{\Delta/2} n(x,y) dy}.
\]

(10)

Let us fix \( \eta \) and \( f \) and treat \( \Delta \) as the control parameter. When \( \Delta \) is slightly larger than \( \Delta_c = \pi/k_c(f) \), only the fundamental mode \( k = \pi/\Delta \) is unstable, and the bifurcation curve has the form

\[
|Y_c| = Y(\Delta - \Delta_c)^{1/2}.
\]

(11)

Here

\[
Y = \frac{2^{3/2} f_0}{C^{1/2} \Delta f} \quad \text{and} \quad f_0 = 2 \int_0^1 dx \frac{\Phi_{01}}{Z^2 F},
\]

and \( \Phi_{01}(x) \) is the solution of initial-value problem for Eq. (8) with the initial conditions \( Y(0) = 1 \) and \( Y'(0) = 0 \). Equation (11) assumes \( C > 0 \): a supercritical bifurcation. We have found that, at fixed \( \eta \), \( C > 0 \) on an interval \( f_- < \eta < f_+ \) that lies within the spinodal interval \( (f_1,f_2) \). On the intervals \( f_1 < f < f_- \) and \( f_+ < f < f_2 \) the coefficient \( C \) becomes negative which indicates a subcritical bifurcation. The solid line in Fig. 6 shows the supercritical bifurcation curve (11) for \( \eta = 10.050 \) and \( f = 0.025 \). Here \( \Delta_c = 0.514 \) and \( Y = 0.142 \).

When \( \Delta \) is well above \( \Delta_c \), the weakly nonlinear theory is invalid, and a numerical solution of the fully nonlinear hydrostatic problem (4)–(6) is needed for the determination of \( |Y_c| \). An alternative approach is a hydrodynamic simulation that is a numerical solution of the hydrodynamic equations. Numerical simulations of this type were done in Ref. [16] for a different version of constitutive relations [10] and a different boundary condition at the driving wall. It was observed that the phase separation instability produces multiple clusters whose further dynamics proceed as gas-mediated com-
FIG. 2. Nucleation and coarsening of clusters as observed in an EMD simulation with \( N=2 \times 10^4 \) particles for \( \eta = 11.050 \), \( f = 0.025 \), and \( \Delta = 3 \). The hot wall is on the right. The scaled times are \( 14.425 \) (a), \( 26.218 \) (b) and \( 191.616 \) (c). Panel (d) is a density map of the steady state obtained by Livne in a simplified hydrodynamic simulation for the same hydrodynamic parameters [23].

petition and coarsening. Direct merging of clusters can also occur. The final symmetry-broken state, as observed in the hydrodynamic simulations, is always a single, almost densely packed stationary 2D cluster coexisting with gas (or dilute bubble coexisting with denser fluid). The cluster is located in one of the system’s corners (unless periodic boundary conditions are used). This scenario was confirmed in a hydrodynamic simulation of the present system (for \( \eta = 11.050 \), \( f = 0.025 \), and \( \Delta = 3 \)) done by Livne [23]. A density map of the hydrodynamic final state in this case is shown in Fig. 2(d). The steady-state value \( |Y_c| = 0.265 \), obtained in this simulation, is shown by the circle in Fig. 6.

IV. EMD SIMULATIONS

A. Simulation method, parameters, and diagnostics

We put the predictions of the granular hydrostatics into test by doing extensive EMD simulations of this system. Most of the simulations were done with \( N=2 \times 10^4 \) particles; hard disks of diameter \( d = 1 \) and mass \( m = 1 \). The thermal wall temperature is \( T_0 = 1 \), so the scaled time unit is \( d(m/T_0)^{1/2} = 1 \). A standard event-driven algorithm [24] was used. Two of the hydrodynamic parameters, \( \eta = 11.050 \) and \( f = 0.025 \), were fixed in all simulations, while \( \Delta \) was varied in the range of \( 0.1 < \Delta < 3 \). This was achieved by varying \( L_x \), \( L_y \), and \( r \). Indeed, for a fixed \( \eta \), \( f \), \( \Delta \), and \( N \) the coefficient of normal restitution

\[
r = 1 - \frac{\sqrt{3} \eta f \Delta}{\pi N}
\]

(12)

and the system’s dimensions

\[
L_x = \left( \frac{\sqrt{3} N}{2 f \Delta} \right)^{1/2} \quad \text{and} \quad L_y = \left( \frac{\sqrt{3} N \Delta}{2 f} \right)^{1/2}
\]

(13)

are uniquely determined. For the values of the parameters that we used, \( r \) was always in the range of nearly elastic collisions: \( r \gg 0.977 \). The initial spatial distribution of the particles was (statistically) uniform, while the initial velocity distribution was Maxwell’s with the wall temperature \( T_0 = 1 \). The center-of-mass coordinate \( Y_c(t) \) was used as a quantitative probe of the lateral asymmetry of the system. Before taking the steady-state measurements we waited until transients died out. This was monitored by the time dependence of the average kinetic energy of the particles (which first decayed and then approached an almost constant value) and by the time dependence of the center of mass itself, see below. Selected movies of these simulations can be downloaded from Ref. [37].

B. Final states at different \( \Delta \)

The EMD simulations showed that, at aspect ratios well below the threshold value of \( \Delta = \Delta_c \approx 0.514 \), the final state is a (weakly fluctuating) stripe state. The number density profile versus \( x \), found in the simulations, compares very well with the hydrostatic solution (see Fig. 1), while \( Y_c(t) \) stays close to zero. Notice that the Jenkins-Richman constitutive relations [20], which we used in this comparison, do not include any fitting parameters. Therefore, well below the instability threshold in \( \Delta \), the hydrostatic solution yields a quantitatively accurate leading-order description of the system.

At aspect ratios well above the instability threshold we always observed several clusters nucleating at the wall opposite to the driving wall. The cluster dynamics [Fig. 2(a)–2(c)] proceeds as gas-mediated competition and coarsening (sometimes as direct mergers) of clusters, in accord with hydrodynamic simulations [16]. As time increases, the number of clusters goes down, and only one dense cluster, fluctuating around its average position in one of the two corners, opposite to the thermal wall, finally survives. Figure 2(c) shows a snapshot of the final state for \( \Delta = 3 \). For comparison, Fig. 2(d) shows a density map of the final steady state obtained by Livne in a hydrodynamic simulation for the same hydrodynamic parameters. The center-of-mass position \( Y_c \) of the steady state agrees well with the average-in-time center-of-mass position, measured in the EMD simulations, as shown by the circle in Fig. 6. This indicates that, well above the instability threshold, the hydrostatic theory describes the steady states of the system well. We can also refer the reader to the recent EMD simulation results for very large aspect ratios [17]. As no appreciable fluctuations around a broken-symmetry steady state were reported, one can safely assume that the broken-symmetry steady states observed in Ref. [17] should be also describable by the hydrostatic theory.

The system behavior changes dramatically, however, as the aspect ratio \( \Delta \) approaches \( \Delta_c \). We found that, in a wide region of \( \Delta \) around \( \Delta_c \), the final state of the system exhibits large-amplitude irregular oscillations as dense clusters at the wall opposite to the driving wall nucleate, move in the lateral
direction, dissolve, and reappear. Figure 3 shows a typical sequence of snapshots from an EMD simulation for $\Delta = 1$.

Figure 4 shows the time history of the center-of-mass coordinate $Y_c$ for six different values of $\Delta$. One can see that, in a wide region of intermediate $\Delta$, the center-of-mass coordinate $Y_c(t)$ shows large-amplitude irregular oscillations. Noticeable are multiple zero crossings of $Y_c(t)$ at aspect ratios above the hydrodynamic bifurcation point $\Delta_c \approx 0.514$ [Figs. 4(c)–4(e)]. Smaller but still significant irregular oscillations are also observed below $\Delta_c$, as if the system persistently tends to break the lateral symmetry there. The hydrostatic picture is recovered when one moves farther away, in any direction, from the region of $\Delta \sim \Delta_c$. Indeed, Fig. 4(e) shows that zero crossings of $Y_c(t)$ occur less often for $\Delta = 1.3$ than for $\Delta = 0.7$ or 1. At still larger $\Delta$ [Fig. 4(f)] no zero crossings are observed for any reasonable simulation time, and $Y_c$ fluctuates around a constant value that is very close to that predicted by the hydrostatic theory (and shown by the circle in Fig. 6).

To better characterize the fluctuation-dominated region, we computed the probability distribution function $P(|Y_c|)$ of different values of $|Y_c|$ in a statistical steady state, that is, after transients die out. The stationarity of the remaining data was tested by dividing the respective time interval into three subintervals and checking that the differences in $P(|Y_c|)$ for the subintervals are small and not systematic. The probability distribution $P(|Y_c|)$ is shown, at different $\Delta$, in Fig. 5. At $\Delta < \Delta_c$, the maximum of $P(|Y_c|)$ is at $|Y_c| = 0$, and it is relatively narrow. Correspondingly, there is no symmetry breaking there, the fluctuations are relatively small, and the hydrostatic theory yields an accurate leading-order description. At $\Delta \simeq \Delta_c$, the maximum of $P(|Y_c|)$ is at a nonzero $|Y_c|$. This is a clear manifestation of symmetry breaking: a dense cluster develops in one of the corners away from the driving wall. The probability distribution $P(|Y_c|)$ is also quite narrow here, the fluctuations are relatively small, and there is a good agreement between the hydrostatic theory and EMD simulations. On the contrary, in a wide region of $\Delta$ around $\Delta_c$, the probability distribution $P(|Y_c|)$ is very broad, and the hydrostatic theory breaks down. By following the position of the maximum of $P(|Y_c|)$ at different $\Delta$ (see Fig. 6), one can see that the symmetry-breaking transition occurs somewhere in the region of $0.3 < \Delta < 1.0$. Because of the extreme flatness and broadness of the probability distribution $P(|Y_c|)$ in this region, a more accurate estimate of the position of the maximum of $P(|Y_c|)$ requires a much better sta-
afford in this series of simulations of the maxima of $P$ in the wide fluctuation-dominated region, between the positions $D = \Delta$. We even cannot exclude a change in the character of bifurcation caused by the fluctuations (apparently without shifting the bifurcation point). Indeed, the maxima of $P(|Y_c|)$ at $\Delta = 1.0, 1.3,$ and $2.0$ appear to lie on a straight line passing through the theoretical transition point $\Delta_c \approx 0.5$. As $\Delta$ increases further, the discrepancy between the positions of the maxima of $P(|Y_c|)$ and the theoretical bifurcation curve goes down [25]. Importantly, the fluctuation-dominated region $0.3 < \Delta < 1.0$ does include the hydrostatic transition point $\Delta_c \approx 0.5$.

We should stress that the failure of hydrostatics is observed at intermediate values of the aspect ratio $\Delta$, when the hydrodynamic parameters $\eta$ and $f$ and the number of particles $N$ are fixed. In view of Eq. (12), while increasing $\Delta$, one increases the inelasticity of particle collisions $1 - r$. That the hydrostatic theory fails at intermediate values of the inelasticity, and improves at small enough or large enough inelasticities, excludes the inelasticity itself as the reason for the failure.

C. Simulations with different $N$

We did a series of simulations with different number of particles $N$ in order to verify the hydrostatic scaling and investigate the $N$ dependence of the (relatively weak) fluctuations well below and well above $\Delta_c$. These additional simulations were done for $\Delta = 0.1$ and three values of $N$, $5 \times 10^3$, $10^4$, and $1.5 \times 10^5$, and for $\Delta = 3.0$ and $N = 4 \times 10^4$.

When varying $N$ at fixed $\Delta$, we kept the hydrodynamic parameters $\eta = 11050$ and $f = 0.025$ constant. Therefore, if the hydrostatic equations provide a correct leading-order theory of the steady states far below and far above $\Delta_c$, the time-averaged steady-state values of $Y_c$ should become $N$ independent for large enough $N$. Figure 7 shows $Y_c$ versus time for $\Delta = 0.1$ at the four different values of $N$. One can see that, in all these cases, the average value of $Y_c$ is close to zero as expected, while fluctuations are relatively small. Figure 8 shows the dynamics of $Y_c(t)$ for $\Delta = 3$ and two differ-

FIG. 5. The probability distribution function $P(|Y_c|)$ of the fluctuating final state of the system for $\eta = 11050$ and $f = 0.025$ and different values of the aspect ratio $\Delta$, as observed in EMD simulations with $N = 2 \times 10^4$ particles. In order to show all the graphs on the same scale, the probabilities (rather than the probability densities) for each bin are shown.

FIG. 6. The effective bifurcation diagram of the system for $\eta = 11050$ and $f = 0.025$, observed in EMD simulations with $N = 2 \times 10^4$ particles. Diamonds show, for each $\Delta$, the positions of the maxima of the probability distribution function $P(|Y_c|)$. Above the transition, the error bars show the errors in the estimation of the position of the maximum of $P(|Y_c|)$. Below the transition the error bars show the errors in the estimation of $\langle Y_c \rangle$: the time average of $Y_c$. The solid line is the bifurcation curve (11) close to threshold. The empty circle at $\Delta = 3$ shows the result of the hydrodynamic simulation by Livne. The dashed line is an interpolation between the solid line and the empty circle.

FIG. 7. $Y_c$ vs time for $\eta = 11050$, $f = 0.025$, and $\Delta = 0.1$ for $N = 5000$ (a), 10,000 (b), 15,000, (c), and 20,000 (d), as observed in EMD simulations. Time units are the same as in Fig. 4.
ent values of $N$: $2 \times 10^4$ and $4 \times 10^4$. Here the symmetry breaking is evident as a dense cluster develops in a corner. With a moderate accuracy determined by the relatively high level of fluctuations of $Y_c$, the average values of $Y_c$ at late times are close to each other. Therefore, well below and well above $\Delta_\epsilon$, the hydrostatic scaling is obeyed.

Simulations with fixed scaled parameters $\eta, f$, and $\Delta$ but different $N$ can also help in identifying the mechanism of breakdown of the hydrostatic theory at aspect ratios around $\Delta_\epsilon$. Indeed, it is natural to interpret the giant oscillations, shown in Figs. 4(c)–4(e) in terms of a strong coupling between the two bifurcated states predicted by the hydrostatic theory. One possible scenario of this coupling (which we call scenario I) relies on the discrete-particle noise, unaccounted for by granular hydrodynamics. Below $\Delta_\epsilon$, the discrete-particle noise is expected to cause fluctuations, that is, to broaden the distribution of $Y_c$ as indeed observed in Fig. 5. If scenario I is correct, the standard deviation $\sigma$ of $Y_c(t)$ from its average value should vanish as $N$ goes to infinity, at fixed hydrodynamic parameters $\eta, f$, and $\Delta$.

Another possibility (scenario II) is that the fluctuations persist in the limit of $N \to \infty$. If this is the case, the dominating mechanism of fluctuations has a purely hydrodynamic nature and should be explainable by a full hydrodynamic analysis (as opposed to the hydrostatic analysis, and to the simplified hydrodynamic simulations that used a model Stokes friction instead of the full viscosity). Here the coupling between the two symmetry-broken states may be due to either an unstable hydrodynamic mode (scenario IIa) or a weakly damped mode (scenario IIb). In scenario IIb, $\sigma$ should vanish, as $N \to \infty$, if one waits for a sufficiently long time. Therefore, to distinguish between the two subscenarios, one should, in addition to the limit of $N \to \infty$, take the limit of $t \to \infty$.

021302-7

FIG. 8. $Y_c$ vs time for $\eta = 11\, 050$, $f = 0.025$, and $\Delta = 3$ for two different values of $N$, as observed in EMD simulations. The thick line corresponds to $N = 2 \times 10^4$ and the thin line corresponds to $N = 4 \times 10^4$. Time units are the same as in Fig. 4.

FIG. 9. Shown is $\sigma$, the standard deviation of $Y_c$ from its (almost zero) average value, vs the number of particles $N$ for $\eta = 11\, 050$, $f = 0.025$, and $\Delta = 0.1$. The symbols show the simulation results. The curve shows, as a reference, the power-law dependence $\sigma = BN^{-\beta}$ with exponent $\beta = 0.23$, see the text.
cease to provide a good characterization of the system at large $N$.

Still, if one continues following $\sigma$ as $N$ increases, one observes (see Fig. 9) that $\sigma$ decreases much more slowly than the classic dependence $N^{-1/2}$ characteristic of equilibrium systems. If one attempts to interpret the decrease of $\sigma$ with an increase of $N$ in terms of an empirical power law, one obtains an exponent $-0.23$, instead of the classical value of $-1/2$ for equilibrium systems. Importantly, we did reproduce the classical $N^{-1/2}$ scaling of $\sigma$ in a control series of simulations with the same $f$ and $\Delta$, but with $\eta=0$ (elastic collisions). Moreover, a good quantitative agreement was obtained with a theoretical result for $\sigma$ that directly follows from the classic expression for the density correlation function in equilibrium [27]. We also found that, for the same total number of particles $N$, the fluctuation levels in the elastic case are significantly lower than in the inelastic case. That is, well below $\Delta_c$, the fluctuations, though much smaller than those observed for $\Delta-\Delta_c$, are still large compared to the elastic case.

Overall, our simulations with different $N$ strongly indicate that the hydrostatic equations provide a correct leading-order theory of this system well below and well above $\Delta_c$. On the other hand, the simulations proved to be insufficient for determining the mechanism of giant fluctuations that we observed in this system at $\Delta-\Delta_c$. We cannot even be sure at this point whether the fluctuations (or, more precisely, their low-frequency components) persist or not as $N \to \infty$.

V. SUMMARY AND DISCUSSION

The main results of this work can be summarized in the following way. Granular hydrostatics, in combination with simplified hydrodynamic simulations, correctly predict the phase separation instability in this prototypical driven granular system. Well above and well below the critical value of the aspect ratio $\Delta_c$, the hydrostatic theory describes the steady state of the system well. However, in a wide region of aspect ratios around $\Delta_c$ the system is dominates by fluctuations and the hydrostatic theory fails. The fluctuation levels are anomalously high even relatively far from the hydrostatic bifurcation point, and they certainly do not exhibit the classic $N^{-1/2}$ scaling with the number of particles $N$.

Though we are unable to pinpoint the mechanism of excitation of the giant fluctuations, we can suggest two different scenarios for their origin. In scenario I the fluctuations are driven by discrete-particle noise. Indeed, it is well known that discrete-particle noise can drive relatively large fluctuations in the vicinity of thresholds of hydrodynamic instabilities [12] and nonequilibrium phase transitions [28]. Unfortunately, our simulations with different $N$, but fixed $\eta$, $f$, and $\Delta$, have been insufficient to prove or disprove this scenario.

A difficulty with scenario I is that the fluctuations are so big in so wide a region of aspect ratios. No anomaly of this type has been observed in any other symmetry-breaking instability of granular flow, even with much smaller numbers of particles. As an example, let us consider for a moment the same system, but introduce gravity in the $x$ direction. Now the granular gas is heated from below, and the system exhibits another symmetry-breaking instability: thermal convection, similar to the Rayleigh-Bénard convection of classical fluids. The transition to convection occurs via a supercritical bifurcation [29–31]. Though EMD simulations of thermal granular convection [29] involved only $N=2300$ particles (which is much less than $N=2 \times 10^4$ used in the present work), a sharp supercritical bifurcation was observed, in agreement with a hydrodynamic analysis [30,31]. By comparison, the giant fluctuations, observed in a wide region of $\Delta$ in the present work, are an anomaly, as one needs some (hydrodynamic?) mechanism of strong amplification of the discrete-particle noise.

If scenario I proves to be correct, the corresponding theory can be developed in the framework of fluctuating hydrodynamics [27], generalized to granular gases in the limit of nearly elastic collisions. Fluctuating hydrodynamics is a Langevin-type theory that takes into account the discrete character of particles by adding $\delta$-correlated noise terms in the momentum and energy equations [27]. Fluctuating hydrodynamics is by now well established for classical fluids in 3D, including nonequilibrium states [12,32]. We should mention here that the 2D case has an additional difficulty. The coupling of fluctuations here is anomalously strong, even in the elastic case: the transport coefficients diverge in the thermodynamic limit, except for a sufficiently dilute gas [33]. Therefore, one can hope to generalize the fluctuating hydrodynamics to the 2D gas of inelastic hard spheres in the dilute limit [34]. Close to the phase separation threshold, the dilute limit holds with a reasonable accuracy. It would be interesting to investigate the phase separation problem in 3D, where important differences in the fluctuation behavior may occur.

Alternatively, in scenario II the low-frequency component of the giant fluctuations has a purely hydrodynamic origin and is driven either by a presently unknown hydrodynamic instability (scenario Ila) or by a long-lived transient mode (scenario IIb). Effects of these types are obviously missed by a hydrostatic analysis. They may have also been missed by the time-dependent hydrodynamic simulation [23] that employed a model Stokes friction, rather than the hard-sphere viscosity, to accelerate the convergence to a steady state. If scenario II is correct, the low-frequency component of the fluctuations should be observable in hydrodynamic simulations with the true hard-sphere viscosity. These simulations, therefore, should be an important next step in the analysis of this fascinating problem.

ACKNOWLEDGMENTS

We are very grateful to E. Livne for doing the hydrodynamic simulation. We thank A. Barrat, I. Goldhirsch, and E. Khain for useful discussions. This research was supported by Deutsche Forschungsgemeinschaft (Grant No. PO 472/5-2), by the Israel Science Foundation (Grant No. 180/02), by the Russian Foundation for Basic Research (Grant No. 02-01-00734), and by Deutscher Akademischer Austauschdienst.
GIANT FLUCTUATIONS AT A GRANULAR PHASE...

[18] T.P.C. van Noije and M.H. Ernst, in Granular Gases (Ref. [2]), p. 3; J.J. Brey and D. Cubero, ibid., p. 59; I. Goldhirsch, ibid., p. 79.
[23] The hydrodynamic simulation was done with the constitutive relations by Grossman et al., [10], more accurate at large densities. In addition, the gas-kinetic viscosity in the momentum equation was replaced in this simulation, as well as in the simulations [13,16], by a moderately large Stokes friction. Obviously, the Stokes friction does not affect hydrostatic steady states. However, it cannot provide a faithful description of the shear modes in a gas of hard spheres.
[25] Notice that, for large aspect ratios, hydrodynamic simulations are not expected to give a high accuracy for an entirely different reason. The density of the symmetry-broken cluster here approaches the close-packing density, while the accuracy of the interpolating constitutive relations [10] is not very high.
[26] A single simulation such as those shown in Figs. 4(c), 4(d), or 4(e) requires about 350 h of the CPU time of a Pentium P4 at 1.4 GHz.
[34] Unfortunately, recent attempts to employ fluctuating hydrodynamics in the context of a freely evolving [35] and randomly driven [36] dilute granular gas are incomplete, as they do not account for an important additional Langevin term in the energy equation, arising because of the discreteness of the collisional energy losses.
[37] See http://bioinf.charite.de/kies/giantfluctuations/