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Giant fluctuations at a granular phase separation threshold
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We investigate a phase separation instability that occurs in a system of nearly elastically colliding hard
spheres driven by a thermal wall. If the aspect ratio of the confining box exceeds a threshold value, granular
hydrostatics predict phase separation: the formation of a high-density region coexisting with a low-density
region along the wall that is opposite to the thermal wall. Event-driven molecular dynamics simulations
confirm this prediction. The theoretical bifurcation curve agrees with the simulations quantitatively well below
and well above the threshold. However, in a wide region of aspect ratios around the threshold, the system is
dominated by fluctuations, and the hydrostatic theory breaks down. Two possible scenarios of the origin of the
giant fluctuations are discussed.
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I. INTRODUCTION

Dynamics of a system of inelastically colliding ha
spheres have attracted a great deal of recent interest@1,2#, in
particular in the context of validity of kinetic theory an
hydrodynamics of rapid granular flow developed in t
1980s @3#. Hydrodynamics looks ideally suitable for a d
scription of large-scale patterns observed in rapid gran
flows: a plethora of clustering phenomena@4#, vortices@5#,
oscillons@6#, shocks@7#, etc., that are difficult to understan
in the language of individual particles. However, a fir
principles derivation of a universally applicable continuu
theory of granular gas is not a simple task, even in the di
limit. The use of the Enskog equation, the starting point o
systematic derivation of the constitutive relations of granu
hydrodynamics, is based on themolecular chaoshypothesis.
This hypothesis is justified for not too large densities and
an ensemble ofelastichard spheres. Its use forinelastichard
spheres is not obvious, as inelasticity of the particle co
sions introduces interparticle correlations@8#. The correla-
tions become stronger as the inelasticity of the collisio
increases. On the contrary, fornearly elasticcollisions, 1
2r 2!1 ~wherer is the coefficient of normal restitution! the
correlations are small, and the Enskog equation can be sa
used.

An important additional assumption, made in the proc
of the derivation of hydrodynamics from the Enskog equ
tion, is scale separation. Hydrodynamics demands that
mean free path of the particles be much less than any c
acteristic length scale, and the mean time between two c
secutive collisions be much less than any characteristic t
scale described hydrodynamically. This condition should
verified, in every specific system, after the hydrodynam
problem is solved and the characteristic length and t
scales determined. Again, it is safe to say that this condi
can be satisfied if the particle collisions are nearly ela
@9–11#. Restrictive as it is, the nearly elastic limit is conce
tually important just because granular hydrodynamics is
pected to work here.

Another potentially important, albeit largely unexplore
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limitation of the validity of granular hydrodynamics~or,
rather, of any continuum approach to rapid granular flow! is
due to the noise caused by the discrete nature of partic
Noise is stronger here than in classical~molecular! fluids
simply because the number of particles is much smaller
addition, noise can be amplified at thresholds of hydro
namic instabilities as found, for example, in Rayleig
Bénard convection of classical fluids@12#.

The validity of hydrodynamic description in general, an
the accuracy of constitutive relations in particular, can
conveniently checked on symmetry-breaking instabilit
that are abundant in rapid granular flows. The example o
symmetry-breaking instability that we consider in this wo
deals with a very simple setting: a two-dimensional~2D!
system of nearly elastically colliding hard spheres, confin
by a rectangular box and driven by a thermal sidewall at z
gravity. The setting is described in detail in Sec. II. The ba
steady state here is the ‘‘stripe state’’: a stripe of enhan
density at the wall opposite to the driving wall@10#. In the
continuum language, the stripe state is uniform in the late
direction, by which we mean the direction parallel to t
driving wall. Within a certain range of parameters~delin-
eated below!, steady-state equations of granular hydrod
namics predict spontaneous symmetry-breaking instability
the stripe state, when the aspect ratio of the confining
exceeds a certain threshold@13–16#. The instability leads to
phase separation: the development of ‘‘droplets’’~high-
density domains! coexisting with ‘‘bubbles’’ ~low-density
domains!. For very large aspect ratios of the box, th
symmetry-breaking instability has been recently observed
event-driven molecular dynamics~EMD! simulations, and
described by a phenomenological continuum model@17#.
The present work is devoted to a more detailed investiga
of the phase separation instability in the range of aspect
tios comparableto the threshold value. We employ, in Se
III, the equations of granular hydrodynamics~or rather hy-
drostatics! to compute the supercritical bifurcation curve f
the phase separation instability. Then we report, in Sec.
on extensive EMD simulations that show that this bifurcati
curve is quantitatively accurate well below and well abo
©2004 The American Physical Society02-1
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the threshold value of the aspect ratio. Unexpectedly,
hydrostatic theory fails in a relativelywide region of aspect
ratios around the threshold value, where the system is fo
to exhibit giant fluctuations. In an attempt to get insight in
the mechanism of this anomaly, we investigate, also in S
IV, the dependence of the magnitude of fluctuations on
total number of particles in the system. A summary and d
cussion of our results is presented in Sec. V.

II. MODEL SYSTEM AND HYDROSTATIC EQUATIONS

Let N hard spheres of diameterd and massm51 move in
a 2D rectangular boxLx3Ly . The inelasticity of particle
collisions is parametrized by a constant coefficient of norm
restitution r. Particle collisions with three of the walls ar
elastic. The fourth, thermal wall is located atx5Lx . Upon
collision with it, the normal component of the particle velo
ity is drawn from a Maxwell distribution with temperatur
T0 @10#, while the tangential component of the particle v
locity is preserved.

Working in the nearly elastic limit 12r 2!1 and employ-
ing the Navier-Stokes hydrodynamics@3#, we introduce the
number densityn(r ,t), granular temperatureT(r ,t), and
mean-flow velocityv(r ,t). Energy input at the thermal wa
can be balanced by the dissipation due to interparticle c
sions. Therefore, we assume that the system reaches a
mean-flow steady statev50, and is therefore describable b
the simple momentum and energy balance equations:

p5const, “•~k“T!5I . ~1!

Herep is the pressure,k is the thermal conductivity, andI is
the rate of energy loss by collisions. The hydrostatic eq
tions ~1! should be supplemented by constitutive relatio
p,k, andI in terms ofn andT. These relations are derivab
systematically only in the dilute limit@3,18#. Being inter-
ested in moderate densities, we shall employ the well-kno
constitutive relations by Jenkins and Richman@20#, which
account for excluded particle volume. In the nearly elas
limit one can neglect the inelasticity correction terms inp
and k, as well as the small density gradient term, prop
tional to 12r , in the heat flux@19#.

Equations~1! can be rewritten in terms of a single var
able: the scaled inverse densityz(x,y)5nc /n(x,y), where
nc52/(A3d2) is the hexagonal close-packing density.
scaled coordinatesr /Lx→r , the box dimensions become
3D, whereD5Ly /Lx is the box aspect ratio. We obtain@15#

“•@F~z!“z#5hQ~z!, ~2!

whereF(z)5A(z)B(z),

A~z!5

GF11
9p

16 S 11
2

3GD 2G
z1/2~112G!5/2

,
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B~z!5112G1
p

A3

zS z1
p

16A3
D

S z2
p

2A3
D 3 ,

Q~z!5
6

p

z1/2G

~112G!3/2
,

G5G~z!5
p

2A3

z2
7p

32A3

S z2
p

2A3
D 2 , ~3!

and h5(2p/3)(12r )(Lx /d)2 is the hydrodynamic inelas
ticity parameter. Introducingc(x,y)5*0

zF(z8)dz8, we ar-
rive at the following equation:

“

2c5hQ̃~c!, ~4!

where Q̃(c)5Q@z(c)# ~in the following the symbol; is
omitted!. The boundary conditions are

]c

]x U
x50

5
]c

]yU
x51

5
]c

]y U
y52D/2

5
]c

]yU
y5D/2

50. ~5!

Finally, the number of particles is conserved:

1

DE2D/2

D/2 E
0

1dxdy

z~c!
5

N

LxLync
[ f . ~6!

The hydrostatic problem~4!–~6! is fully determined by three
scaled parameters: the area fractionf, h, andD. Notice that
the steady-statedensitydistributions are independent ofT0 as
the hard-sphere model does not introduce any intrinsic
ergy scale.

III. STRIPE STATE, SYMMETRY-BREAKING
INSTABILITY, AND BIFURCATION CURVE

The trivial steady state of the system is a laterally unifo
cluster of particles located at the wallx50, opposite to the
thermal wall @10#; see Fig. 1. This state will be called th
stripe state. In the language of hydrodynamics, it is descri
by the y-independent solution of Eqs.~4!–~6!; we shall de-
note it byz5Z(x), correspondinglyc5C(x).

It was predicted that, in a wide region of the parame
space (f ,h,D), the stripe state should give way, by
symmetry-breaking bifurcation~either supercritical or sub
critical!, to a laterally asymmetric state@13–16#. For very
large aspect ratiosD, this phase separation instability ha
been observed in EMD simulations@17#. For a laterally
asymmetric steady state one can write

c~x,y!5C~x!1(
n

wn~x!exp~ inky!, ~7!
2-2
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GIANT FLUCTUATIONS AT A GRANULAR PHASE . . . PHYSICAL REVIEW E 69, 021302 ~2004!
where w2n(x)5wn* (x). What happens close to the supe
critical bifurcation point? Here the leading terms are tho
with n561, while w0;w1

2, w2;w1
2, w3;w1

3, etc. The bi-
furcation point itself can be found from the linear eigenva
problem

w1k9 2hQCw1k2kc
2w1k50, ~8!

w1k8 ~0!50 and w1k~1!50, ~9!

which was analyzed in Refs.@13–15#. Here

QC~x!5F21dQ/dzuz5Z(x) .

For given h and f, one obtains the eigenvaluek5kc(h, f )
and corresponding eigenfunctionw1k(x). The modes withk
,kc(h, f ) are unstable. Within a spinodal intervalf 1(h)
, f , f 2(h), the effective lateral compressibility of the gas
negative, and this is the mechanism of the instability@15,17#.
At h@1, there is a range off such thatkc and w1k(x) be-
come insensitive to the precise form of the boundary con
tions at the driving wall. This is the universal ‘‘localizatio
regime,’’ when the eigenfunctionw1k(x) is exponentially lo-
calized at the wall opposite to the driving wall@13,15#. The
spinodal interval exists forhc,h,`; it shrinks to zero at
h5hc.344.3@17,21#. It has been recently shown, for a di
ferent boundary condition at the driving wall, that the bifu
cation from the stripe state to a phase separated state i
percritical within some density intervalf 2(h), f , f 1(h),
which is located within the spinodal interval. On each of t
intervals f 1, f , f 2 and f 1, f , f 2 , the bifurcation is sub-
critical @16#.

As we have already noted, the present work focuses
the phase separation via a supercritical bifurcation. To ob
the asymptotics of the supercritical bifurcation curve close
onset, one should go to the second order of the perturba
theory and take into account, in Eq.~7!, the termsn50,

FIG. 1. The stripe state forh511 050 andf 50.025. We show
the scaled density vs scaled coordinatex obtained~a! by solving
numerically Eqs.~4!–~6! in one dimension~line! and ~b! in EMD
simulation withN523104 particles forD50.1 ~squares!. The in-
set shows a snapshot of the system from the EMD simulation~the
hot wall is on the right!. Because of a finite image resolution th
particle number density in this and other snapshots may look hig
than it is.
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61, and62. In this way one obtains three linear ordina
differential equations, presented in Ref.@16#, where the same
problem was solved for a different boundary condition at
driving wall. The solvability condition for these equation
@22# yields the bifurcation curve:A versuskc

22k2. The am-
plitude A can be uniquely defined by the relation

w~x!5AF0~x!1AuAu2dw~x!,

where F0(x) is the solution of Eqs.~8! and ~9! such that
F0(0)51, while dw(x)5O(1). This yields

A~kc
22k2!5CAuAu2,

where C5const. The trivial solutionA50 describes the
stripe state, while the nontrivial one,kc

22k25CuAu2, de-
scribes the bifurcated state. The constantC can be computed
numerically. C.0(,0) corresponds to supercritical~sub-
critical! bifurcation. We present here the resulting bifurcati
curve forYc , the ~normalized! y coordinate of the center o
mass of the granulate,

Yc5

E
0

1

dxE
2D/2

D/2

yn~x,y!dy

DE
0

1

dxE
2D/2

D/2

n~x,y!dy

. ~10!

Let us fixh andf and treatD as the control parameter. Whe
D is slightly larger thanDc5p/kc( f ), only the fundamental
modek5p/D is unstable, and the bifurcation curve has t
form

uYcu5Y~D2Dc!
1/2. ~11!

Here

Y5
23/2f 0

C1/2Dcf
f 052E

0

1

dx
F01

Z2F
,

and F01(x) is the solution of initial-value problem for Eq
~8! with the initial conditionsY(0)51 andY8(0)50. Equa-
tion ~11! assumesC.0: a supercritical bifurcation. We hav
found that, at fixedh, C.0 on an interval f 2(h), f
, f 1(h) that lies within the spinodal interval (f 1 , f 2). On
the intervalsf 1, f , f 2 and f 1, f , f 2 the coefficientC be-
comes negative which indicates a subcritical bifurcation. T
solid line in Fig. 6 shows the supercritical bifurcation cur
~11! for h511 050 andf 50.025. HereDc.0.514 andY
.0.142.

WhenD is well aboveDc , the weakly nonlinear theory is
invalid, and a numerical solution of the fully nonlinear h
drostatic problem~4!–~6! is needed for the determination o
uYcu. An alternative approach is a hydrodynamic simulati
that is a numerical solution of the hydrodynamic equatio
Numerical simulations of this type were done in Ref.@16# for
a different version of constitutive relations@10# and a differ-
ent boundary condition at the driving wall. It was observ
that the phase separation instability produces multiple c
ters whose further dynamics proceed as gas-mediated c

er
2-3
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petition and coarsening. Direct merging of clusters can a
occur. The final symmetry-broken state, as observed in
hydrodynamic simulations, is always a single, alm
densely packed stationary 2D cluster coexisting with gas~or
dilute bubble coexisting with denser fluid!. The cluster is
located in one of the system’s corners~unless periodic
boundary conditions are used!. This scenario was confirme
in a hydrodynamic simulation of thepresentsystem~for h
511 050, f 50.025, andD53) done by Livne@23#. A den-
sity map of the hydrodynamic final state in this case is sho
in Fig. 2~d!. The steady-state valueuYcu.0.265, obtained in
this simulation, is shown by the circle in Fig. 6.

IV. EMD SIMULATIONS

A. Simulation method, parameters, and diagnostics

We put the predictions of the granular hydrostatics in
test by doing extensive EMD simulations of this syste
Most of the simulations were done withN523104 par-
ticles: hard disks of diameterd51 and massm51. The ther-
mal wall temperature isT051, so the scaled time unit i
d(m/T0)1/251. A standard event-driven algorithm@24# was
used. Two of the hydrodynamic parameters,h511 050 and
f 50.025, were fixed in all simulations, whileD was varied
in the range of 0.1,D,3. This was achieved by varyingLx ,
Ly , andr. Indeed, for a fixedh, f, D, andN the coefficient
of normal restitution

r 512
A3h f D

pN
~12!

and the system’s dimensions

Lx5SA3N

2 f D D 1/2

and Ly5SA3ND

2 f D 1/2

~13!

FIG. 2. Nucleation and coarsening of clusters as observed i
EMD simulation with N523104 particles for h511 050, f
50.025, andD53. The hot wall is on the right. The scaled time
are 14 425~a!, 26 218~b! and 191 616~c!. Panel~d! is a density
map of the steady state obtained by Livne in a simplified hydro
namic simulation for the same hydrodynamic parameters@23#.
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are uniquely determined. For the values of the parame
that we used,r was always in the range of nearly elast
collisions: r>0.977. The initial spatial distribution of the
particles was~statistically! uniform, while the initial velocity
distribution was Maxwell’s with the wall temperatureT0

51. The center-of-mass coordinateYc(t) was used as a
quantitative probe of the lateral asymmetry of the syste
Before taking the steady-state measurements we waited
transients died out. This was monitored by the time dep
dence of the average kinetic energy of the particles~which
first decayed and then approached an almost constant v!
and by the time dependence of the center of mass itself,
below. Selected movies of these simulations can be do
loaded from Ref.@37#.

B. Final states at different D

The EMD simulations showed that, at aspect ratioswell
belowthe threshold value ofD5Dc.0.514, the final state is
a ~weakly fluctuating! stripe state. The number density pr
file versusx, found in the simulations, compares very we
with the hydrostatic solution~see Fig. 1!, while Yc(t) stays
close to zero. Notice that the Jenkins-Richman constitu
relations @20#, which we used in this comparison, do n
include any fitting parameters. Therefore, well below the
stability threshold inD, the hydrostatic solution yields a
quantitatively accurate leading-order description of the s
tem.

At aspect ratioswell abovethe instability threshold we
always observed several clusters nucleating at the wall
posite to the driving wall. The cluster dynamics@Fig. 2~a!–
2~c!# proceeds as gas-mediated competition and coarse
~sometimes as direct mergers! of clusters, in accord with
hydrodynamic simulations@16#. As time increases, the num
ber of clusters goes down, and only one dense cluster, fl
tuating around its average position in one of the two corne
opposite to the thermal wall, finally survives. Figure 2~c!
shows a snapshot of the final state forD53. For comparison,
Fig. 2~d! shows a density map of the final steady state
tained by Livne in ahydrodynamicsimulation for the same
hydrodynamic parameters. The center-of-mass positionYc of
the steady state agrees well with the average-in-time cen
of-mass position, measured in the EMD simulations,
shown by the circle in Fig. 6. This indicates that, well abo
the instability threshold, the hydrostatic theory describes
steady states of the system well. We can also refer the re
to the recent EMD simulation results forvery large aspect
ratios @17#. As no appreciable fluctuations around a broke
symmetry steady state were reported, one can safely ass
that the broken-symmetry steady states observed in Ref.@17#
should be also describable by the hydrostatic theory.

The system behavior changes dramatically, however
the aspect ratioD approachesDc . We found that, in a wide
region ofD aroundDc , the final state of the system exhibi
large-amplitude irregular oscillations as dense clusters at
wall opposite to the driving wall nucleate, move in the late
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-

2-4



s

GIANT FLUCTUATIONS AT A GRANULAR PHASE . . . PHYSICAL REVIEW E 69, 021302 ~2004!
FIG. 3. Irregular lateral cluster
dynamics forD51 as observed in
an EMD simulation with N52
3104 particles forh511 050 and
f 50.025. The time progresse
from left to right, starting from the
upper row. The hot wall is on the
right.
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its
direction, dissolve, and reappear. Figure 3 shows a typ
sequence of snapshots from an EMD simulation forD51.

Figure 4 shows the time history of the center-of-mass
ordinateYc for six different values ofD. One can see that, in
a wide region of intermediateD, the center-of-mass coord
nateYc(t) shows large-amplitude irregular oscillations. N
ticeable are multiple zero crossings ofYc(t) at aspect ratios
above the hydrodynamic bifurcation pointDc.0.514 @Figs.
4~c!–4~e!#. Smaller but still significant irregular oscillation

FIG. 4. Yc vs time for h511 050 andf 50.025 and different
values of the aspect ratioD, as observed in EMD simulations wit
N523104 particles. Time here is proportional to the number
particle collisions;t5500 corresponds to 505 036 scaled time un
02130
al
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are also observed belowDc , as if the system persistentl
tends to break the lateral symmetry there. The hydrost
picture is recovered when one moves farther away, in
direction, from the region ofD;Dc . Indeed, Fig. 4~e! shows
that zero crossings ofYc(t) occur less often forD51.3 than
for D50.7 or 1. At still largerD @Fig. 4~f!# no zero crossings
are observed for any reasonable simulation time, andYc fluc-
tuates around a constant value that is very close to that
dicted by the hydrostatic theory~and shown by the circle in
Fig. 6!.

To better characterize the fluctuation-dominated regi
we computed the probability distribution functionP(uYcu) of
different values ofuYcu in a statistical steady state, that i
after transients die out. The stationarity of the remaining d
was tested by dividing the respective time interval into th
subintervals and checking that the differences inP(uYcu) for
the subintervals are small and not systematic. The probab
distribution P(uYcu) is shown, at differentD, in Fig. 5. At
D!Dc the maximum ofP(uYcu) is at uYcu50, and it is rela-
tively narrow. Correspondingly, there is no symmetry brea
ing there, the fluctuations are relatively small, and the hyd
static theory yields an accurate leading-order description
D@Dc , the maximum ofP(uYcu) is at a nonzerouYcu. This
is a clear manifestation of symmetry breaking: a dense c
ter develops in one of the corners away from the drivi
wall. The probability distributionP(uYcu) is also quite nar-
row here, the fluctuations are relatively small, and there
good agreement between the hydrostatic theory and E
simulations. On the contrary, in a wide region ofD around
Dc , the probability distributionP(uYcu) is very broad, and
the hydrostatic theory breaks down. By following the po
tion of the maximum ofP(uYcu) at differentD ~see Fig. 6!,
one can see that the symmetry-breaking transition occ
somewhere in the region of 0.3,D,1.0. Because of the
extreme flatness and broadness of the probability distribu
P(uYcu) in this region, a more accurate estimate of the po
tion of the maximum ofP(uYcu) requires a much better sta.
2-5
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MEERSONet al. PHYSICAL REVIEW E 69, 021302 ~2004!
tistics ~that is, a much longer simulation time! than we could
afford in this series of simulations@26#.

Noticeable in Fig. 6 is a systematic discrepancy, with
the wide fluctuation-dominated region, between the positi
of the maxima ofP(uYcu) and the hydrostatic bifurcation
curve computed in Sec. III. We even cannot exclude
change in the character of bifurcation caused by the fluc
tions ~apparently without shifting the bifurcation point!. In-
deed, the maxima ofP(uYcu) at D51.0, 1.3, and 2.0 appea

FIG. 6. The effective bifurcation diagram of the system forh
511 050 andf 50.025, observed in EMD simulations withN52
3104 particles. Diamonds show, for eachD, the positions of the
maxima of the probability distribution functionP(uYcu). Above the
transition, the error bars show the errors in the estimation of
position of the maximum ofP(uYcu). Below the transition the erro
bars show the errors in the estimation of^Yc&: the time average of
Yc . The solid line is the bifurcation curve~11! close to threshold.
The empty circle atD53 shows the result of the hydrodynam
simulation by Livne. The dashed line is an interpolation betwe
the solid line and the empty circle.

FIG. 5. The probability distribution functionP(uYcu) of the fluc-
tuating final state of the system forh511 050 andf 50.025 and
different values of the aspect ratioD, as observed in EMD simula
tions with N523104 particles. In order to show all the graphs o
the same scale, the probabilities~rather than the probability dens
ties! for each bin are shown.
02130
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to lie on a straight line passing through the theoretical tr
sition pointDc.0.5. AsD increases further, the discrepanc
between the positions of the maxima ofP(uYcu) and the
theoretical bifurcation curve goes down@25#. Importantly,
the fluctuation-dominated region 0.3,D,1.0 does include
the hydrostatic transition pointDc.0.5.

We should stress that the failure of hydrostatics is o
served atintermediatevalues of the aspect ratioD, when the
hydrodynamic parametersh and f and the number of par
ticles N are fixed. In view of Eq.~12!, while increasingD,
one increases the inelasticity of particle collisions 12r . That
the hydrostatic theory fails at intermediate values of the
elasticity, and improves at small enough or large enough
elasticities, excludes the inelasticity itself as the reason
the failure.

C. Simulations with different N

We did a series of simulations with different number
particlesN in order to verify the hydrostatic scaling and in
vestigate theN dependence of the~relatively weak! fluctua-
tions well below and well aboveDc . These additional simu-
lations were done forD50.1 and three values ofN, 5
3103, 104, and 1.53104, and forD53.0 andN543104.

When varyingN at fixed D, we kept the hydrodynamic
parametersh511 050 andf 50.025 constant. Therefore, i
the hydrostatic equations provide a correct leading-or
theory of the steady states far below and far aboveDc , the
time-averaged steady-state values ofYc should becomeN
independent for large enoughN. Figure 7 showsYc versus
time for D50.1 at the four different values ofN. One can see
that, in all these cases, the average value ofYc is close to
zero as expected, while fluctuations are relatively small. F
ure 8 shows the dynamics ofYc(t) for D53 and two differ-

e

n

FIG. 7. Yc vs time for h511 050, f 50.025, andD50.1 for
N55000~a!, 10 000~b!, 15 000,~c!, and 20 000~d!, as observed in
EMD simulations. Time units are the same as in Fig. 4.
2-6
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ent values ofN: 23104 and 43104. Here the symmetry
breaking is evident as a dense cluster develops in a co
With a moderate accuracy determined by the relatively h
level of fluctuations ofYc , the average values ofYc at late
times are close to each other. Therefore, well below and w
aboveDc the hydrostatic scaling is obeyed.

Simulations with fixed scaled parametersh, f, andD but
different N can also help in identifying the mechanism
breakdown of the hydrostatic theory at aspect ratios aro
Dc . Indeed, it is natural to interpret the giant oscillation
shown in Figs. 4~c!–4~e! in terms of a strong coupling be
tween the two bifurcated states predicted by the hydrost
theory. One possible scenario of this coupling~which we call
scenario I! relies on the discrete-particle noise, unaccoun
for by granular hydrodynamics. BelowDc , the discrete-
particle noise is expected to cause fluctuations, that is
broaden the distribution ofYc as indeed observed in Fig. 5.
scenario I is correct, the standard deviations of Yc(t) from
its average value should vanish asN goes to infinity, at fixed
hydrodynamic parametersh, f, andD.

Another possibility~scenario II! is that the fluctuations
persist in the limit ofN→`. If this is the case, the domina
ing mechanism of fluctuations has a purely hydrodynam
nature and should be explainable by afull hydrodynamic
analysis~as opposed to our hydrostatic analysis, and to
simplified hydrodynamic simulations that used a mo
Stokes friction instead of the full viscosity!. Here the cou-
pling between the two symmetry-broken states may be du
either an unstable hydrodynamic mode~scenario IIa! or a
weakly damped mode~scenario IIb!. In scenario IIb,s
should vanish, asN→`, if one waits for a sufficiently long
time. Therefore, to distinguish between the two subscena
one should, in addition to the limit ofN→`, take the limit
of t→`.

Obviously, one is unable to take any of these two limits
actual EMD simulations, where the maximum achieva
values ofN and t are limited by the available computer re
sources. So what was observed in our EMD simulations w
differentN? Figures 7 and 9 show what happens well bel
Dc , when N increases from 5000 to 20 000. One can s
from Fig. 7 that, asN grows, the high-frequency componen
of the fluctuations do decrease, but the low-frequency co

FIG. 8. Yc vs time forh511 050, f 50.025, andD53 for two
different values ofN, as observed in EMD simulations. The thic
line corresponds toN523104 and the thin line corresponds toN
543104. Time units are the same as in Fig. 4.
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ponent does not show any pronounced decrease. Overal
fluctuation spectrum moves towards the lower frequenc
As the result, a good resolution of the low-frequency part
the power spectrum requires longer and longer simulati
~which rapidly become prohibitively long!. This introduces
an additional, nontrivial constraint on simulations with
large number of particles. A similar situation occurs w
aboveDc . Figure 8 does indicate thats goes down asN
goes up from 20 000 to 40 000. However, one also obse
that, asN grows, the role of the low-frequency componen
of the fluctuations increases.

Hydrodynamics provides a hint for the mechanism of t
‘‘redshift’’ of the power spectrum with an increase ofN.
There are four hydrodynamic modes in the system: t
acoustic modes, the entropy mode, and the shear mode.
frequencies of the acoustic modes are the highest, as the
determined by the ‘‘ideal’’~nondissipative! terms in the hy-
drodynamic equations, and they scale like the inverse sys
size. The frequencies of the entropy and shear modes
much lower as they are determined by the transport coe
cients, the heat conduction, viscosity, and inelastic loss r
and they scale like the inversesquareof the system size. In
the units ofd5m5T051, and at fixed hydrodynamic pa
rametersh, f, andD, a largerN implies a larger system, se
Eqs.~13!. Correspondingly, asN increases, the characterist
frequencies of the entropy/shear modes go down much fa
than those of the acoustic modes. Therefore, it seems li
that one of these modes is responsible for the low-freque
components of the fluctuations. A related issue is that,
contrast to the hydrostatic problem~1!, the full time-
dependent hydrodynamic problem has an additional sc
parameterd/Lx . This parameter describes the role of t
dissipative terms compared to the ideal terms in the hyd
dynamic equations. As it is clear from Eq.~13!, when in-
creasingN at constanth and f, one reduces this additiona
parameter. Therefore, asN increases, the low-frequenc
shear/entropy modes should become more and more pe
tent. As these modes are not necessarily broadband,s might

FIG. 9. Shown iss, the standard deviation ofYc from its ~al-
most zero! average value, vs the number of particlesN for h
511 050, f 50.025, andD50.1. The symbols show the simulatio
results. The curve shows, as a reference, the power-law depend
s5BN2b with exponentb50.23, see the text.
2-7
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cease to provide a good characterization of the system
largeN.

Still, if one continues followings as N increases, one
observes~see Fig. 9! that s decreases much more slow
than the classic dependenceN21/2 characteristic of equilib-
rium systems. If one attempts to interpret the decrease os
with an increase ofN in terms of an empirical power law
one obtains an exponent20.23, instead of the classica
value of21/2 for equilibrium systems. Importantly, we di
reproduce the classicalN21/2 scaling ofs in a control series
of simulations with the samef andD, but with h50 ~elastic
collisions!. Moreover, a good quantitative agreement was
tained with a theoretical result fors that directly follows
from the classic expression for the density correlation fu
tion in equilibrium @27#. We also found that, for the sam
total number of particlesN, the fluctuation levels in the elas
tic case are significantly lower than in the inelastic case. T
is, well below Dc , the fluctuations, though much small
than those observed forD;Dc , are still large compared to
the elastic case.

Overall, our simulations with differentN strongly indicate
that the hydrostatic equations provide a correct leading-o
theory of this system well below and well aboveDc . On the
other hand, the simulations proved to be insufficient for
termining the mechanism of giant fluctuations that we o
served in this system atD;Dc . We cannot even be sure a
this point whether the fluctuations~or, more precisely, their
low-frequency components! persist or not asN→`.

V. SUMMARY AND DISCUSSION

The main results of this work can be summarized in
following way. Granular hydrostatics, in combination wi
simplified hydrodynamic simulations, correctly predict t
phase separation instability in this prototypical driven gra
lar system. Well above and well below the critical value
the aspect ratioDc , the hydrostatic theory describes th
steady state of the system well. However, in a wide region
aspect ratios aroundDc the system is dominated by fluctua
tions and the hydrostatic theory fails. The fluctuation lev
are anomalously high even relatively far from the hydrosta
bifurcation point, and they certainly do not exhibit the clas
N21/2 scaling with the number of particlesN.

Though we are unable to pinpoint the mechanism of
citation of the giant fluctuations, we can suggest two diff
ent scenarios for their origin. In scenario I the fluctuatio
are driven by discrete-particle noise. Indeed, it is well kno
that discrete-particle noise can drive relatively large fluct
tions in the vicinity of thresholds of hydrodynamic instabi
ties @12# and nonequilibrium phase transitions@28#. Unfortu-
nately, our simulations with differentN, but fixedh, f, and
D, have been insufficient to prove or disprove this scena

A difficulty with scenario I is that the fluctuations are s
big in so wide a region of aspect ratios. No anomaly of t
type has been observed in any other symmetry-breaking
stability of granular flow, even with much smaller numbe
of particles. As an example, let us consider for a moment
same system, but introduce gravity in thex direction. Now
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the granular gas is heated from below, and the system ex
its another symmetry-breaking instability: thermal conve
tion, similar to the Rayleigh-Be´nard convection of classica
fluids. The transition to convection occurs via a supercriti
bifurcation @29–31#. Though EMD simulations of therma
granular convection@29# involved only N52300 particles
~which is much less thanN523104 used in the presen
work!, a sharp supercritical bifurcation was observed,
agreement with a hydrodynamic analysis@30,31#. By com-
parison, the giant fluctuations, observed in a wide region
D in the present work, are an anomaly, as one needs s
~hydrodynamic?! mechanism of strongamplificationof the
discrete-particle noise.

If scenario I proves to be correct, the correspond
theory can be developed in the framework of fluctuating h
drodynamics@27#, generalized to granular gases in the lim
of nearly elastic collisions. Fluctuating hydrodynamics is
Langevin-type theory that takes into account the discr
character of particles by addingd-correlated noise terms in
the momentum and energy equations@27#. Fluctuating hy-
drodynamics is by now well established for classical fluids
3D, including nonequilibrium states@12,32#. We should men-
tion here that the 2D case has an additional difficulty. T
coupling of fluctuations here is anomalously strong, even
the elastic case: the transport coefficients diverge in the t
modynamic limit, except for a sufficiently dilute gas@33#.
Therefore, one can hope to generalize the fluctuating hyd
dynamics to the 2D gas of inelastic hard spheres in the di
limit @34#. Close to the phase separation threshold, the di
limit holds with a reasonable accuracy. It would be intere
ing to investigate the phase separation problem in 3D, wh
important differences in the fluctuation behavior may occ

Alternatively, in scenario II the low-frequency compone
of the giant fluctuations has a purely hydrodynamic orig
and is driven either by a presently unknown hydrodynam
instability ~scenario IIa! or by a long-lived transient mode
~scenario IIb!. Effects of these types are obviously missed
a hydrostaticanalysis. They may have also been missed
the time-dependent hydrodynamic simulation@23# that em-
ployed a model Stokes friction, rather than the hard-sph
viscosity, to accelerate the convergence to a steady stat
scenario II is correct, the low-frequency component of t
fluctuations should be observable in hydrodynamic simu
tions with the true hard-sphere viscosity. These simulatio
therefore, should be an important next step in the analysi
this fascinating problem.
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