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Giant fluctuations at a granular phase separation threshold
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We investigate a phase separation instability that occurs in a system of nearly elastically colliding hard
spheres driven by a thermal wall. If the aspect ratio of the confining box exceeds a threshold value, granular
hydrostatics predict phase separation: the formation of a high-density region coexisting with a low-density
region along the wall that is opposite to the thermal wall. Event-driven molecular dynamics simulations
confirm this prediction. The theoretical bifurcation curve agrees with the simulations quantitatively well below
and well above the threshold. However, in a wide region of aspect ratios around the threshold, the system is
dominated by fluctuations, and the hydrostatic theory breaks down. Two possible scenarios of the origin of the
giant fluctuations are discussed.
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[. INTRODUCTION limitation of the validity of granular hydrodynamic&r,
rather, of any continuum approach to rapid granular fleswv
Dynamics of a system of inelastically colliding hard due to the noise caused by the discrete nature of particles.
spheres have attracted a great deal of recent intekegdtin ~ Noise is stronger here than in classi¢atoleculaj fluids
particular in the context of validity of kinetic theory and simply because the number of particles is much smaller. In
hydrodynamics of rapid granular flow developed in theaddition, noise can be amplified at thresholds of hydrody-
1980s[3]. Hydrodynamics looks ideally suitable for a de- namic instabilities as found, for example, in Rayleigh-
scription of large-scale patterns observed in rapid granulaBenard convection of classical fluid42].
flows: a plethora of clustering phenomefd, vortices[5], The validity of hydrodynamic description in general, and
oscillons[6], shockd 7], etc., that are difficult to understand the accuracy of constitutive relations in particular, can be
in the language of individual particles. However, a first-conveniently checked on symmetry-breaking instabilities
principles derivation of a universally applicable continuumthat are abundant in rapid granular flows. The example of a
theory of granular gas is not a simple task, even in the dilutaymmetry-breaking instability that we consider in this work
limit. The use of the Enskog equation, the starting point of adeals with a very simple setting: a two-dimensiol(2D)
systematic derivation of the constitutive relations of granularsystem of nearly elastically colliding hard spheres, confined
hydrodynamics, is based on thelecular chaosiypothesis. by a rectangular box and driven by a thermal sidewall at zero
This hypothesis is justified for not too large densities and forgravity. The setting is described in detail in Sec. II. The basic
an ensemble oflastichard spheres. Its use forelastichard ~ steady state here is the “stripe state”: a stripe of enhanced
spheres is not obvious, as inelasticity of the particle colli-density at the wall opposite to the driving wallQ]. In the
sions introduces interparticle correlatiof]. The correla- continuum language, the stripe state is uniform in the lateral
tions become stronger as the inelasticity of the collisionglirection, by which we mean the direction parallel to the
increases. On the contrary, foearly elasticcollisions, 1  driving wall. Within a certain range of paramete(delin-
—r2<1 (wherer is the coefficient of normal restitutipthe  eated below steady-state equations of granular hydrody-
correlations are small, and the Enskog equation can be safehamics predict spontaneous symmetry-breaking instability of
used. the stripe state, when the aspect ratio of the confining box
An important additional assumption, made in the procesgxceeds a certain threshdlti3—16. The instability leads to
of the derivation of hydrodynamics from the Enskog equaphase separation: the development of “dropleigigh-
tion, is scale separation. Hydrodynamics demands that théensity domains coexisting with “bubbles” (low-density
mean free path of the particles be much less than any chadomaing. For very large aspect ratios of the box, this
acteristic length scale, and the mean time between two corsymmetry-breaking instability has been recently observed in
secutive collisions be much less than any characteristic timevent-driven molecular dynamiog€MD) simulations, and
scale described hydrodynamically. This condition should belescribed by a phenomenological continuum moldéf].
verified, in every specific system, after the hydrodynamicThe present work is devoted to a more detailed investigation
problem is solved and the characteristic length and timesf the phase separation instability in the range of aspect ra-
scales determined. Again, it is safe to say that this conditiotios comparableto the threshold value. We employ, in Sec.
can be satisfied if the particle collisions are nearly elastidll, the equations of granular hydrodynamits rather hy-
[9-11]. Restrictive as it is, the nearly elastic limit is concep- drostatic$ to compute the supercritical bifurcation curve for
tually important just because granular hydrodynamics is exthe phase separation instability. Then we report, in Sec. IV,
pected to work here. on extensive EMD simulations that show that this bifurcation
Another potentially important, albeit largely unexplored, curve is quantitatively accurate well below and well above
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the threshold value of the aspect ratio. Unexpectedly, the -
hydrostatic theory fails in a relativelyide region of aspect z| z+ —=
ratios around the threshold value, where the system is found T 163

to exhibit giant fluctuations. In an attempt to get insight into B(z)=1+2G+ J3 . 3
the mechanism of this anomaly, we investigate, also in Sec. z— ——=
IV, the dependence of the magnitude of fluctuations on the 2\3
total number of particles in the system. A summary and dis- p
cussion of our results is presented in Sec. V. Qz)= 6 z'%G
7 (1+42G)%¥?
IIl. MODEL SYSTEM AND HYDROSTATIC EQUATIONS -
a
Let N hard spheres of diametdrand massn=1 move in Z= ﬁ
a 2D rectangular box ,XL,. The inelasticity of particle G=G(2)= . 5, 3
collisions is parametrized by a constant coefficient of normal 23 T
restitutionr. Particle collisions with three of the walls are - _2\/5

elastic. The fourth, thermal wall is located»tL,. Upon

collision with it, the normal component of the particle veloc- ;g n=(27/3)(1—r)(L,/d)? is the hydrodynamic inelas-

ity is drawn from a Maxwell distribution with temperature .. .. ; (2 (5\ Ao
. : X ticity parameter. Introducings(x,y)=[gF(z')dz’, we ar-
T, [10], while the tangential component of the particle ve- rive at the following equation:

locity is preserved.
Working in the nearly elastic limit  r?<1 and employ- 2 R
ing the Navier-Stokes hydrodynamif3], we introduce the Viy=nQy), @

number densityn(r,t), granular temperaturd(r,t), and R . . .
mean-flow velocityv(r,t). Energy input at the thermal wall g;i;gé?(ﬁ)]e t?cglfr(]g;]r (Ic?o:]r:j?ti:)on”s()\iav;gg the symbot- is
can be balanced by the dissipation due to interparticle colli- ' y

sions. Therefore, we assume that the system reaches a zero- o o oy o
mean-flow steady state=0, and is therefore describable by X =y =y =y =0. (5)
the simple momentum and energy balance equations: Xlx=o Nlx=1 Nly——ap Nlysr
Finally, the number of particles is conserved:
p=const, V- («kVT)=1I. (1)
1 (a2 (idxdy N
— J = =f. (6)
AJ-artoz(¢) LiLyng

Herep is the pressurex is the thermal conductivity, anidis

the rate of energy loss by collisions. The hydrostatic equa- _ . .
tions (1) should be supplemented by constitutive relationz:Lrhe hydrostatic problert4)—(6) is fully determined .by three
scaled parameters: the area fractips, andA. Notice that

.k, andl in terms ofn andT. These relations are derivable Lo e .
b.x the steady-statéensitydistributions are independent ©f as

systematically only in the dilute limif3,18]. Being inter- he hard-sph del d introd A
ested in moderate densities, we shall employ the WeII-knowH"(nar‘;"]y ‘;‘(r:a;:p ere model does not introduce any Intrinsic en-

constitutive relations by Jenkins and Richm&®], which
account for excluded particle volume. In the nearly elastic

limit one can neglect the inelasticity correction termspin lll. STRIPE STATE, SYMMETRY-BREAKING
and , as well as the small density gradient term, propor- INSTABILITY, AND BIFURCATION CURVE
tional to 1-r, in the heat flu{19]. The trivial steady state of the system is a laterally uniform

Equations(1) can be rewritten in terms of a single vari- o ster of particles located at the wadi=0, opposite to the
able: the sgalgd inverse densitfx,y)=nc/n(x,y), where  yhermal wall[10]; see Fig. 1. This state will be called the
ne=2/(+3d ) is the hexagonal close-packing density. In gyine state. In the language of hydrodynamics, it is described
scaled coordinates/L,—r, the box dimensions become 1 by the y-independent solution of Eq§4)—(6); we shall de-
XA, whereA=L, /L, is the box aspect ratio. We obtdib5] ot it byz=2Z(x), correspondinglys="(x).

It was predicted that, in a wide region of the parameter
V. [F(2)Vz]=7Q(z), ) space {,7,A), _the ;tripe _stat(_e should gi\(g way, by a
symmetry-breaking bifurcatiofeither supercritical or sub-
critical), to a laterally asymmetric sta{d3—-16. For very

whereF(z)=A(2)B(2), large aspect ratiod, this phase separation instability has
been observed in EMD simulationd7]. For a laterally
97 5 \2 asymmetric steady state one can write
A Gl1l+ 16 1+ %) } " 2 .
z)= X,y)=V(x)+ x)expinky), 7
221+ 2G)52 P(x,y) =Y (x) 2 en(x)explinky) (7)
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0.20 - +1, and=2. In this way one obtains three linear ordinary
differential equations, presented in Rlf6], where the same
problem was solved for a different boundary condition at the
driving wall. The solvability condition for these equations
[22] yields the bifurcation curveA versusk?—k?. The am-
plitude A can be uniquely defined by the relation

n(x)/n

@(X) =Ady(x) +A|A|*S¢(x),

where ®((x) is the solution of Eqs(8) and (9) such that
®((0)=1, while So(x)=0(1). This yields

0.8 1.0 A(kg_kz):CA|A|2,

FIG. 1. The stripe state fop=11 050 andf=0.025. We show Where C=const. The trivial solutionA=0 describes the
the scaled density vs scaled coordinatebtained(a) by solving ~ Stripe state, while the nontrivial oné&Z—k?=C|A|?, de-
numerically Eqs(4)—(6) in one dimensior(line) and (b) in EMD scribes the bifurcated state. The const@man be computed
simulation withN=2x 10* particles forA=0.1 (squares The in-  numerically. C>0(<0) corresponds to supercriticgsub-
set shows a snapshot of the system from the EMD simuldtlon  critical) bifurcation. We present here the resulting bifurcation

hot wall is on the right Because of a finite image resolution the curve forY,, the (normalized y coordinate of the center of
particle number density in this and other snapshots may look highemass of the granulate,

than it is.
A2
where ¢_,(x) =¥ (x). What happens close to the super- f dxf yn(x y)dy
critical bifurcation point? Here the leading terms are those NG (10
with n==1, while g~ 2, ¢~ 2, ¢3~ @3, etc. The bi- f dxf n(xy)dy
furcation point itself can be found from the linear eigenvalue
roblem
P Let us fix » andf and treatA as the control parameter. When
e~ 7Qu@1k— kgsolk:O, (8) A is slightly Ia'rger tham\ .= 7/k(f), .only the fundamental
modek=7r/A is unstable, and the bifurcation curve has the
¢1(0)=0 and ¢;(1)=0, (9 form
— _ 1/2
which was analyzed in Ref§13-15. Here [Yel =Y (A=A (1)
- H
Qu(¥)=F 1dQ/dZ,—7( ere
32
For given » andf, one obtains the eigenvalle=k.(7,f) Y= 270 J dxq)()l
and corresponding eigenfunctian(x). The modes wittk CY2A f

<k.(#n,f) are unstable. Within a spinodal intervé)(#)
<f<f,(n), the effective lateral compressibility of the gas is and ®4,(x) is the solution of initial-value problem for Eq.
negative and this is the mechanism of the instabilifyb,17]. (8) with the initial conditionsY(0)=1 andY'(0)=0. Equa-
At 7>1, there is a range df such thatk, and ¢ (x) be-  tion (11) assume€£>0: a supercritical bifurcation. We have
come insensitive to the precise form of the boundary condifound that, at fixedn», C>0 on an intervalf_(»)<f
tions at the driving wall. This is the universal “localization <f, (#) that lies within the spinodal intervalf {,f,). On
regime,” when the eigenfunctiop,(x) is exponentially lo-  the intervalsf,<f<f_ andf <f<f, the coefficientC be-
calized at the wall opposite to the driving wall3,15. The = comes negative which indicates a subcritical bifurcation. The
spinodal interval exists for,< 7<; it shrinks to zero at solid line in Fig. 6 shows the supercritical bifurcation curve
7= n.~=344.3[17,21. It has been recently shown, for a dif- (11) for »=11050 andf=0.025. HereA.=0.514 andY
ferent boundary condition at the driving wall, that the bifur- =0.142.
cation from the stripe state to a phase separated state is su-WhenA is well aboveA ., the weakly nonlinear theory is
percritical within some density intervdl_ () <f<f_ (%), invalid, and a numerical solution of the fully nonlinear hy-
which is located within the spinodal interval. On each of thedrostatic problen{4)—(6) is needed for the determination of
intervalsf,<f<f_ andf, <f<f,, the bifurcation is sub- |Y.|. An alternative approach is a hydrodynamic simulation
critical [16]. that is a numerical solution of the hydrodynamic equations.
As we have already noted, the present work focuses oMumerical simulations of this type were done in Hé®] for
the phase separation via a supercritical bifurcation. To obtaia different version of constitutive relatioh%0] and a differ-
the asymptotics of the supercritical bifurcation curve close tent boundary condition at the driving wall. It was observed
onset, one should go to the second order of the perturbatioihat the phase separation instability produces multiple clus-
theory and take into account, in E¢7), the termsn=0, ters whose further dynamics proceed as gas-mediated com-
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(a) (b) () (d)

FIG. 2. Nucleation and coarsening of clusters as observed in an

EMD simulation with N=2x10* particles for »=11050, f

=0.025, andA=3. The hot wall is on the right. The scaled times

are 14 425(a), 26 218(b) and 191 616(c). Panel(d) is a density
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are uniquely determined. For the values of the parameters
that we usedy was always in the range of nearly elastic
collisions: r=0.977. The initial spatial distribution of the
particles wagstatistically uniform, while the initial velocity
distribution was Maxwell's with the wall temperaturg,

=1. The center-of-mass coordinat.(t) was used as a
quantitative probe of the lateral asymmetry of the system.
Before taking the steady-state measurements we waited until
transients died out. This was monitored by the time depen-
dence of the average kinetic energy of the parti¢lesich

first decayed and then approached an almost constant)value
and by the time dependence of the center of mass itself, see
below. Selected movies of these simulations can be down-
loaded from Ref[37].

B. Final states at different A

The EMD simulations showed that, at aspect ratias|
belowthe threshold value ok =A.=0.514, the final state is

map of the steady state obtained by Livne in a simplified hydrody-a (weakly fluctuating stripe state. The number density pro-

namic simulation for the same hydrodynamic paramet28s

file versusx, found in the simulations, compares very well
with the hydrostatic solutiofisee Fig. 1, while Y,(t) stays

petition and coarsening. Direct merging of clusters can als@|ose to zero. Notice that the Jenkins-Richman constitutive
occur. The final symmetry-broken state, as observed in thg|ations [20], which we used in this comparison, do not

hydrodynamic simulations, is always a single, almost

densely packed stationary 2D cluster coexisting with (@as
dilute bubble coexisting with denser flgidThe cluster is
located in one of the system’s cornefsnless periodic

boundary conditions are usedhis scenario was confirmed

in a hydrodynamic simulation of thpresentsystem(for #
=11050,f=0.025, andA =3) done by Livne[23]. A den-

sity map of the hydrodynamic final state in this case is show

in Fig. 2(d). The steady-state valy¥|=0.265, obtained in
this simulation, is shown by the circle in Fig. 6.

IV. EMD SIMULATIONS

A. Simulation method, parameters, and diagnostics

include any fitting parameters. Therefore, well below the in-
stability threshold inA, the hydrostatic solution yields a
quantitatively accurate leading-order description of the sys-
tem.

At aspect ratioswell abovethe instability threshold we
always observed several clusters nucleating at the wall op-

jposite to the driving wall. The cluster dynamidsig. 2(a)—-

2(c)] proceeds as gas-mediated competition and coarsening
(sometimes as direct merggrsf clusters, in accord with
hydrodynamic simulationgl6]. As time increases, the num-
ber of clusters goes down, and only one dense cluster, fluc-
tuating around its average position in one of the two corners,
opposite to the thermal wall, finally survives. Figuréc)2

We put the predictions of the granular hydrostatics intoShoWs @ snapshot of the final state fo= 3. For comparison,
test by doing extensive EMD simulations of this system.Fig. 2d) shows a density map of the final steady state ob-

Most of the simulations were done witN=2x10* par-
ticles: hard disks of diametel=1 and massn= 1. The ther-
mal wall temperature i9,=1, so the scaled time unit is
d(m/Ty)¥2=1. A standard event-driven algorithf24] was
used. Two of the hydrodynamic parametesss 11 050 and
f=0.025, were fixed in all simulations, whil® was varied
in the range of 0.&£ A< 3. This was achieved by varyirg,,
Ly, andr. Indeed, for a fixedy, f, A, andN the coefficient
of normal restitution

V37fA

r=1- 7N

12

and the system’s dimensions

\/§N 1/2 \/§NA 1/2
sz(m and Ly: T (13)

tained by Livne in ahydrodynamicsimulation for the same
hydrodynamic parameters. The center-of-mass positjoof

the steady state agrees well with the average-in-time center-
of-mass position, measured in the EMD simulations, as
shown by the circle in Fig. 6. This indicates that, well above
the instability threshold, the hydrostatic theory describes the
steady states of the system well. We can also refer the reader
to the recent EMD simulation results feery large aspect
ratios[17]. As no appreciable fluctuations around a broken-
symmetry steady state were reported, one can safely assume
that the broken-symmetry steady states observed in[ Réf.
should be also describable by the hydrostatic theory.

The system behavior changes dramatically, however, as
the aspect ratid approachea .. We found that, in a wide
region of A aroundA ., the final state of the system exhibits
large-amplitude irregular oscillations as dense clusters at the
wall opposite to the driving wall nucleate, move in the lateral
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FIG. 3. Irregular lateral cluster
dynamics forA=1 as observed in
an EMD simulation withN=2
X 10* particles foryp=11 050 and
f=0.025. The time progresses
from left to right, starting from the
upper row. The hot wall is on the
right.

direction, dissolve, and reappear. Figure 3 shows a typicadre also observed below,, as if the system persistently
sequence of snapshots from an EMD simulationXer 1. tends to break the lateral symmetry there. The hydrostatic
Figure 4 shows the time history of the center-of-mass copicture is recovered when one moves farther away, in any
ordinateY for six different values ofA. One can see that, in direction, from the region oA~ A, . Indeed, Fig. 4) shows
a wide region of intermediat&, the center-of-mass coordi- that zero crossings of(t) occur less often foA =1.3 than
nateY(t) shows large-amplitude irregular oscillations. No- for A=0.7 or 1. At still largerA [Fig. 4(f)] no zero crossings
ticeable are multiple zero crossingsOf(t) at aspect ratios  are observed for any reasonable simulation time, nfitic-
above the hydrodynamic bifurcation poitt=0.514[Figs.  ates around a constant value that is very close to that pre-
4(c)-4e)]. Smaller but still significant irregular oscillations dicted by the hydrostatic theoand shown by the circle in

Fig. 6).
02 a | A=04 02 b To better characterize the fluctuation-dominated region,
0.1 0.1 we computed the probability distribution functi®{|Y|) of
. 00 .00 w\,/\w\/ww\ﬂ different values of Y| in a statistical steady state, that is,
> o > o after transients die out. The stationarity of the remaining data
' ’ was tested by dividing the respective time interval into three
02 e ot0 300 460 500 028150 200 380 400 500 subintervals and checking that the difference®{hY,|) for
t t the subintervals are small and not systematic. The probability
02 ey 0z Ao distribution P(]Y,|) is shown, at different\, in Fig. 5. At
' ¢ - ' d — A<A, the maximum ofP(|Y,|) is at|Y,|=0, and it is rela-
Cc C C
o o tively narrow. Correspondingly, there is no symmetry break-
yo 00 o 00 ing there, the fluctuations are relatively small, and the hydro-
-0.1 -0.1 static theory yields an accurate leading-order description. At
02 02 A>A., the maximum ofP(|Y|) is at a nonzerdY|. This
0 500 1000 1500 2000 0 500 1000 1500 2000 is a clear manifestation of symmetry breaking: a dense clus-
‘ 0.3 ' ter develops in one of the corners away from the driving
02 e 0.2} f wall. The probability distributionP(|Y|) is also quite nar-
0.1 0.1 row here, the fluctuations are relatively small, and there is a
. 0.0 o 001 good agreement between the hydrostatic theory and EMD
> o -0-1-\\\/%/_\% simulations. On the contrary, in a wide region &faround
' -0.21 A., the probability distributionP(|Y|) is very broad, and
O 600 1500 2000 035280 200 60 so0 100 the hydrostatic theory breaks down. By following the posi-
1 t tion of the maximum ofP(]Y,|) at differentA (see Fig. 6,

one can see that the symmetry-breaking transition occurs
FIG. 4. Y, vs time for »=11050 andf=0.025 and different SOmMewhere in the region of G:3 <1.0. Because of the
values of the aspect ratid, as observed in EMD simulations with €xtreme flatness and broadness of the probability distribution
N=2x10* particles. Time here is proportional to the number of P(]Y|) in this region, a more accurate estimate of the posi-
particle collisionst=500 corresponds to 505 036 scaled time units.tion of the maximum ofP(|Y.|) requires a much better sta-
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0.02

0.6 0.6 A=10
0.4 A=0.1 04 ] 0.01 (d)
0'2 0'2 h 0.00
' o -0.01
O.g a 0.8 a TT IIIIIIIIIIII _0-02 t T T T T r .
0.4 ] A=0.3 04 ] A=13 0.02 0 100 200 300 400 500
— 0.2 . —~ 0.2 _-_I— 0.01 C)
52 g SRR 1 15— 0.00
= 0.6 = 0.6 | -0.01
a p a ] A=2.0
0.4 3 s 0.4 -0.024 . . . . .
0.2 0.2 ] 0020 100 200 300 400 500
NE Og_...!,!..j.., 0.01 b)
e A0 e A=3.0 0.00
] ] -0.01
0.2 0.2 M -0.024 T T T T S
0 —:u:u:h:'-n-rn-nj 0 - 0.02 100 200 300 400 500
0 01 02 03 0 04 02 03 , 0.01 (a)
1Yl 1Yl > 0.00
-0.01
FIG. 5. The probability distribution functioR(|Y|) of the fluc- -0.02 +——F——F——————
tuating final state of the system foy=11 050 andf=0.025 and 0 100 200 300 400 500
different values of the aspect ratio, as observed in EMD simula- t

tions with N=2x 10" particles. In order to show all the graphs on
the same scale, the probabilitieather than the probability densi-
ties) for each bin are shown.

FIG. 7. Y. vs time for =11 050, f=0.025, andA=0.1 for
N=5000(a), 10 000(b), 15 000,(c), and 20 00Qd), as observed in
EMD simulations. Time units are the same as in Fig. 4.

tistics (that is, a much longer simulation timthan we could ¢ jie on a straight line passing through the theoretical tran-

afford in this series of simulatior|26]. __ sition pointA,=0.5. AsA increases further, the discrepancy
No.t|ceable in Fig. 6 is a systematic discrepancy, W,'t,h'”between the positions of the maxima B{|Y,]) and the

the wide fluctuation-dominated region, between the position$,eoretical bifurcation curve goes dow@s]. Importantly

of the maxima ofP(|Y¢[) and the hydrostatic bifurcation he fiyctuation-dominated region 82 <1.0 does include
curve computed in Sec. lll. We even cannot exclude gpq hydrostatic transition poin,=0.5.

change in the character of bifurcation caused by the fluctua- \yia should stress that the failure of hydrostatics is ob-

tions (apparently without shifting the bifurcation poinin- o1 eq atntermediatevalues of the aspect ratib, when the
deed, the maxima dP(|Y[) atA=1.0, 1.3, and 2.0 appear pyqrodynamic parameters and f and the number of par-
ticles N are fixed. In view of Eq(12), while increasing),

one increases the inelasticity of particle collisionsrl That

the hydrostatic theory fails at intermediate values of the in-
elasticity, and improves at small enough or large enough in-
. elasticities, excludes the inelasticity itself as the reason for
o7 1 the failure.

C. Simulations with different N

$ We did a series of simulations with different number of
particlesN in order to verify the hydrostatic scaling and in-
0 MR B R R R MRS vestigate theN dependence of theelatively weak fluctua-
0 05 1 15 2 tions well below and well abovA .. These additional simu-
A lations were done forA=0.1 and three values df, 5
x10°, 10%, and 1.5<10%, and forA=3.0 andN=4x 10",
When varyingN at fixed A, we kept the hydrodynamic
parametersy=11 050 andf=0.025 constant. Therefore, if
the hydrostatic equations provide a correct leading-order
dheory of the steady states far below and far abave the
time-averaged steady-state valuesYgf should becomeN

FIG. 6. The effective bifurcation diagram of the system fpr
=11 050 andf =0.025, observed in EMD simulations witki=2
x10* particles. Diamonds show, for eadh the positions of the
maxima of the probability distribution functioR(]Y,|). Above the
transition, the error bars show the errors in the estimation of th

position of the maximum oP(]Y,|). Below the transition the error ' )
bars show the errors in the estimation(dt,): the time average of independent for large enoudi Figure 7 showsy versus

Y.. The solid line is the bifurcation curvdl) close to threshold. time forA=0.1 at the four different values &f. One can see
The empty circle ath=3 shows the result of the hydrodynamic that, in all these cases, the average valuef'ofs close to
simulation by Livne. The dashed line is an interpolation betweerzero as expected, while fluctuations are relatively small. Fig-
the solid line and the empty circle. ure 8 shows the dynamics ¥f,(t) for A=3 and two differ-
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0.007 -
0.006
° {

0.005-

-0.30 : : : : . i

0 200 400 600 800 1000
t 0-004 L} & T T
5000 10000 15000 20000
FIG. 8. Y vs time for =11 050, f=0.025, andA =3 for two N

different values ofN, as observed in EMD simulations. The thick
line corresponds ttN=2x10* and the thin line corresponds M
=4x 10" Time units are the same as in Fig. 4.

FIG. 9. Shown iso, the standard deviation of from its (al-
most zerp average value, vs the number of particlesfor »
=11050,f=0.025, andA=0.1. The symbols show the simulation
ent values ofN: 2x10* and 4x 10%. Here the symmetry results. The curve shows, as a reference, the power-law dependence
breaking is evident as a dense cluster develops in a cornef=BN"# with exponeni3=0.23, see the text.
With a moderate accuracy determined by the relatively high
level of fluctuations ofY, the average values of; at late  ponent does not show any pronounced decrease. Overall, the
times are close to each other. Therefore, well below and weljyctuation spectrum moves towards the lower frequencies.
aboveA, the hydrostatic scaling is obeyed. As the result, a good resolution of the low-frequency part of
Simulations with fixed scaled parametersf, andA but  he power spectrum requires longer and longer simulations

different N can also help in identifying the mechanism of (which rapidly become prohibitively long This introduces
breakdown of the hydrostatic theory at aspect ratios aroundy, aqgitional, nontrivial constraint on simulations with a

A.. Indeed, it is natural to interpret the giant oscillations
shown in Figs. 4)—4(e) in terms of a strong coupling be-
tween the two bifurcated states predicted by the hydrostati
theory. One possible scenario of this coupliadnich we call
scenario | relies on the discrete-particle noise, unaccounte . .
for by granular hydrodynamics. Below., the discrete- of the fluctuatlops increases. - .
particle noise is expected to cause fluctuations, that is, tp 'Ydrodynamics provides a hint for the mechanism of the
broaden the distribution of . as indeed observed in Fig. 5. If _edshift” of the power spectrum with an increase of
scenario | is correct, the standard deviatiof Y,(t) from  1here are four hydrodynamic modes in the system: two
its average value should vanishgoes to infinity, at fixed ~acoustic modes, the entropy mode, and the shear mode. The
hydrodynamic parameters, f, andA. frequencies of the acoustic modes are the highest, as they are
Another possibility(scenario 1) is that the fluctuations determined by the “ideal{nondissipativgterms in the hy-
persist in the limit ofN— . If this is the case, the dominat- drodynamic equations, and they scale like the inverse system
ing mechanism of fluctuations has a purely hydrodynamicize. The frequencies of the entropy and shear modes are
nature and should be explainable byfudl hydrodynamic ~much lower as they are determined by the transport coeffi-
analysis(as opposed to our hydrostatic analysis, and to theients, the heat conduction, viscosity, and inelastic loss rate,
simplified hydrodynamic simulations that used a modeland they scale like the inversguareof the system size. In
Stokes friction instead of the full viscos)tyHere the cou- the units ofd=m=Ty=1, and at fixed hydrodynamic pa-
pling between the two symmetry-broken states may be due tmmetersy, f, andA, a largerN implies a larger system, see
either an unstable hydrodynamic mo¢seenario lla or a  Eqgs.(13). Correspondingly, abl increases, the characteristic
weakly damped moddscenario 1Ih. In scenario llb,o  frequencies of the entropy/shear modes go down much faster
should vanish, adl—oo, if one waits for a sufficiently long than those of the acoustic modes. Therefore, it seems likely
time. Therefore, to distinguish between the two subscenarioghat one of these modes is responsible for the low-frequency
one should, in addition to the limit dfl—«, take the limit components of the fluctuations. A related issue is that, in
of t—oo, contrast to the hydrostatic problerfl), the full time-
Obviously, one is unable to take any of these two limits independent hydrodynamic problem has an additional scaled
actual EMD simulations, where the maximum achievableparameterd/L,. This parameter describes the role of the
values ofN andt are limited by the available computer re- dissipative terms compared to the ideal terms in the hydro-
sources. So what was observed in our EMD simulations witldynamic equations. As it is clear from E(L3), when in-
differentN? Figures 7 and 9 show what happens well belowcreasingN at constanty andf, one reduces this additional
A, whenN increases from 5000 to 20000. One can seeparameter. Therefore, all increases, the low-frequency
from Fig. 7 that, aiN grows, the high-frequency components shear/entropy modes should become more and more persis-
of the fluctuations do decrease, but the low-frequency comtent. As these modes are not necessarily broadhamaight

'large number of particles. A similar situation occurs well
aboveA.. Figure 8 does indicate that goes down as\
8oes up from 20 000 to 40 000. However, one also observes
&hat, asN grows, the role of the low-frequency components
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cease to provide a good characterization of the system d&he granular gas is heated from below, and the system exhib-
large N. its another symmetry-breaking instability: thermal convec-
Still, if one continues followingos as N increases, one tion, similar to the Rayleigh-Beard convection of classical
observes(see Fig. 9 that o decreases much more slowly fluids. The transition to convection occurs via a supercritical
than the classic dependentse ¥ characteristic of equilib- bifurcation [29—-31. Though EMD simulations of thermal
rium systems. If one attempts to interpret the decrease of granular convectiorj29] involved only N=2300 particles
with an increase oN in terms of an empirical power law, (which is much less thalN=2x10* used in the present
one obtains an exponent0.23, instead of the classical work), a sharp supercritical bifurcation was observed, in
value of —1/2 for equilibrium systems. Importantly, we did agreement with a hydrodynamic analy§g9,31. By com-
reproduce the classicAl~*? scaling ofo in a control series parison, the giant fluctuations, observed in a wide region of
of simulations with the sameandA, but with =0 (elastic A in the present work, are an anomaly, as one needs some
collisions. Moreover, a good quantitative agreement was ob{hydrodynamic? mechanism of strongmplification of the
tained with a theoretical result far that directly follows  discrete-particle noise.
from the classic expression for the density correlation func- |f scenario | proves to be correct, the corresponding
tion in equilibrium [27]. We also found that, for the same theory can be developed in the framework of fluctuating hy-
t_otal number pf pgmcleN, the quctugnon Igvels in the elas- drodynamicg27], generalized to granular gases in the limit
tic case are significantly Iowert_han in the inelastic case. Thaks nearly elastic collisions. Fluctuating hydrodynamics is a
is, well below A, the fluctuations, Fhough much smaller Langevin-type theory that takes into account the discrete
mzneltggt?f Coabsseerved fax~Ac, are still large compared to character of particles by addingrcorrelated noise terms in
. . L - the momentum and energy equatid¥]. Fluctuating hy-
Overall, our simulations with differert strongly indicate L . . 7.
drodynamics is by now well established for classical fluids in

that the hydrostatic equations provide a correct Ieading-orde,o(D including nonequilibrium statd42,37. We should men-

theory of this system well below and well abokg. On the . " .
other hand, the simulations proved to be insufficient for gefion here that the 2D case has an additional difficulty. The

termining the mechanism of giant fluctuations that we Ob_coupling_of fluctuations here is ano_m_alously strong, even in
served in this system @ ~A.. We cannot even be sure at the elast|c_ case: the transport coeffl_C|_ents dl\_/erge in the ther-
this point whether the fluctuatior(r, more precisely, their Modynamic limit, except for a sufficiently dilute g483].
low-frequency componentpersist or not asl— . Therefore, one can hope to generalize the fluctuating hydro-
dynamics to the 2D gas of inelastic hard spheres in the dilute
limit [34]. Close to the phase separation threshold, the dilute
V. SUMMARY AND DISCUSSION limit holds with a reasonable accuracy. It would be interest-
ing to investigate the phase separation problem in 3D, where
The main results of this work can be summarized in theimportant differences in the fluctuation behavior may occur.
following way. Granular hydrostatics, in combination with  Alternatively, in scenario Il the low-frequency component
simplified hydrodynamic simulations, correctly predict the of the giant fluctuations has a purely hydrodynamic origin
phase separation instability in this prototypical driven granung is driven either by a presently unknown hydrodynamic
lar system. We'II above and well b(_alow the crltlcal'value ofinstability (scenario 11 or by a long-lived transient mode
the aspect ratidd;, the hydrostatic theory describes the (scenario IIh. Effects of these types are obviously missed by
steady state of the system well. However, in a wide region o hydrostaticanalysis. They may have also been missed by
aspect ratios aroundl the system is dominated by fluctua- the time-dependent hydrodynamic simulati@8] that em-
tions and the hydl’ostatic theory fails. The fluctuation |eve|5p|oyed a model Stokes friction, rather than the hard_sphere
are anomalously high even relatively far from the hydrostaticiscosity, to accelerate the convergence to a steady state. If
bifurcation point, and they certainly do not exhibit the classicscenario 1l is correct, the low-frequency component of the
N~"2scaling with the number of particles. fluctuations should be observable in hydrodynamic simula-
Though we are unable to pinpoint the mechanism of extjons with the true hard-sphere viscosity. These simulations,

citation of the giant fluctuations, we can suggest two differ-therefore, should be an important next step in the analysis of
ent scenarios for their origin. In scenario | the fluctuationsthjs fascinating problem.

are driven by discrete-particle noise. Indeed, it is well known
that discrete-particle noise can drive relatively large fluctua-
tions in the vicinity of thresholds of hydrodynamic instabili-
ties[12] and nonequilibrium phase transitiof3]. Unfortu-
nately, our simulations with differertl, but fixed », f, and
A, have been insufficient to prove or disprove this scenario. We are very grateful to E. Livne for doing the hydrody-
A difficulty with scenario | is that the fluctuations are so namic simulation. We thank A. Barrat, I. Goldhirsch, and E.
big in so wide a region of aspect ratios. No anomaly of thisKhain for useful discussions. This research was supported by
type has been observed in any other symmetry-breaking irPeutsche Forschungsgemeinsch&@tant No. PO 472/52
stability of granular flow, even with much smaller numbersby the Israel Science Foundati¢Brant No. 180/0% by the
of particles. As an example, let us consider for a moment th&®ussian Foundation for Basic Reseaf@rant No. 02-01-
same system, but introduce gravity in tkelirection. Now 00734, and by Deutscher Akademischer Austauschdienst.
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