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Abstract. Cohesive powders form agglomerates that can be very porous. Hence they are also very fragile. Consider a process 
of complete fragmentation on a characteristic length scale I, where the fragments are subsequently allowed to settle under 
gravity. If this fragmentation-reagglomeration cycle is repeated sufficiently often, the powder develops a fractal substructure 
with robust statistical properties. The structural evolution is discussed for two different models: The first one is an off-lattice 
model, in which a fragment does not stick to the surface of other fragments that have already settled, but rolls down until 
it finds a locally stable position. The second one is a simpler lattice model, in which a fragment sticks at first contact with 
the agglomerate of fragments that have already settled. Results for the fragment size distribution are shown as well. One can 
distinguish scale invariant dust and fragments of a characteristic size. Their role in the process of structure formation wi l l be 
addressed. 
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INTRODUCTION 

Most particles attract each other, be it by van-der-Waals 
forces or by microscopic liquid menisci at the con
tacts, but often this attraction is so weak compared to 
other forces acting on the particles that it may safely 
be neglected, when explaining the physical behaviour of 
granular matter. There are notable exceptions, however, 
where attractive forces are decisive. In this paper we con
sider one such case, in which the attractive force between 
two particles is much larger than their weight. This is true 
for nanopowders [1], but also for larger particles under 
microgravity [2], or for wet sand [3]. 

Such a granular medium with adhesion between the 
particles can sustain very high porosity in spite of grav
ity. This can be easily shown: Take two equal glass con
tainers, one empty and the other one at most half filled 
with dry sand. Porosity is known to be about 0.36 (ran
dom dense packing). Then about 10 volume percent of 
water is kneaded into the sand. One gets a smooth dough. 
By and by this dough is fragmented by means of a fork 
into crumbs which are poured into the empty container. 
One finds the filling height increased. Then the crumb as
sembly is again fragmented with the fork and filled back 
into the original container. Again the filling height in
creases. Repeating this procedure a few times leads to 
a sand packing with porosity of about 70 percent. Ther-
mophoretic aerosol deposits can even have porosities as 
high as 99 percent. 

In this paper we report on the structural properties 
of a porous assembly of adhesive particles obtained by 

repeated fragmentation and reagglomeration. We show 
that a fractal substructure forms and that the fragment 
size distribution is very broad. To obtain statistically 
significant results for the structure one has to con
sider systems wi th more than one mi l l ion particles for 
many fragmentation-reagglomeration cycles. This is be
yond the capability of Molecular Dynamics simulations. 
Therefore, two simplif ied two-dimensional models were 
studied. 

The first one, an off-lattice model [4] , is a general
ization of a model for the sequential deposition of non-
adhesive spherical particles under the influence of grav
i ty [5, 6, 7, 8, 9, 10]. The second one is a lattice model, 
generalizing the model of ballistic deposition [11, 12]. In 
both models the fol lowing procedure is repeated many 
times: First the agglomerate is cut w i th a square mesh 
into portions. The linear mesh size I can be viewed as the 
typical scale of the fragmentation process. A portion may 
consist of several disconnected fragments. The models 
differ in the way these fragments then settle under grav
ity. They do so as r ig id bodies without taking adhesion 
forces wi th other particles into account. This is justi f ied, 
i f the flakes are sufficiently large, so that their weight 
exceeds the adhesive force between the particles. After 
this reassembly of the fragments the agglomerate is cut 
again wi th the square mesh, and so on, see Fig. 1 and 
Fig. 6. In the fo l lowing, lengths are given in units of the 
average particle radius (off-lattice model) respectively 
the lattice constant (lattice model), masses in units of 
the particle mass, and t ime as number of fragmentation-
reagglomeration cycles. 
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FIGURE 1. Evolution of the packing in the off-lattice model. 
a) Initial packing generated by random sequential sedimenta
tion [5]. The packing is cut by a square mesh into fragments 
(£ = 20); b) The fragments are considered as rigid bodies and 
deposited ( 1 a generation). Again the packing is cut by the 
square mesh (here not shown); c) the fragments are deposited 
again (2 generation), and so on; d) 3 generation; e) 4 
generation; f) 120 generation. 

THE OFF-LATTICE MODEL [4] 

In this model the reagglomeration of the fragments is 
simulated in the fo l lowing way: Each fragment starts 
at a random position wi th a random orientation wel l 
above the already deposited material (the configuration 
of which is regarded as frozen in). Fol lowing gravity, 
i t moves downwards unt i l i t touches the bottom of the 
container or contacts another already deposited particle. 
Then it rolls down as a r ig id body, again fol lowing grav
ity, unt i l the vertical projection of its center of mass falls 
in between two points of contact (with the container or 
previously deposited particles). 

We simulated up to 3 mi l l ion particles represented 
by discs wi th a narrow size distribution (10% variance). 
The ini t ial state was a densely packed agglomerate. 
In each fragmentation-reagglomeration cycle the f i l l ing 
height increases. Asymptotically, the powder adopts a 
very porous, statistically invariant structure, which is ro
bust w i th respect to fragmentation at scale £ and subse
quent gravitational settling of the fragments. 

The f i l l ing height h„ at iteration step n approaches the 
asymptotic height, he, exponentially w i th a relaxation 
time, n0. The inset of F ig . 2 shows that 

ti0(l)
 x £z w i th z = 1. (1) 
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FIGURE 2. The asymptotic filling heigth hx grows as a 
power law hx(£) ~ £a with mesh size £. The full line shows the 
best fit, a = 0.327'. Inset: The relaxation time U0(£) increases 
linearly with mesh size. 

FIGURE 3. Average fragment mass as a function of the mesh 
size £ in the steady state of the off-lattice model. 

For the asymptotic f i l l ing height, a power law 

hco(l) x l a w i th a = 0.327 (2) 

gives a very good fit (see F ig. 2). This implies that the 

number of portions cut f rom the steady state configura

tion of a system of width W scales l ike Np = h„W / £2 °= 

£a-2. Consequently, the mass of a £ x ^-portion has a 

fractal dimension df, 

M 
£f w i th df = 2 - a = 1.67 ± 0 . 0 3 . (3) 

In the steady state the number of fragments per portion 
is determined by the fact that the fragmentation process 
cuts on average as many particle contacts as will be 
reestablished by the agglomeration process. Since every 
fragment, when settling, creates two new contacts, the 
number of fragments per portion must be proportional to 
the number of contacts cut at the boundary of a mesh cell, 

Np 
gdf-1 . (4) 
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FIGURE 4. Normalized fragment mass distribution for dif
ferent mesh sizes £. / (m) is the number of fragments of mass 
m divided by the total number of fragments for a given i. Inset: 
Data collapse using mc °c fdf with df = 1.695, and T = 1.41. 

mesh size 
100 

FIGURE 5. Chunk mass mc as a function of mesh size. Slope 
of straight line is 1.695. 

This is confirmed by Fig. 3, which shows that M/Nf oc £. 
A detailed understanding of the fragment properties is 

provided by the distribution of fragment masses, shown 
in Fig. 4. Two types of fragments must be distinguished, 
large chunks at the upper end of the mass spectrum 
wi th a characteristic size mc , and scale invariant dust 
responsible for the power law part that is cut off by 
mc . Comparing the mass distributions for different mesh 
sizes £ shows, that they can approximately be written in 
the form 

f(m,£) = m zf m 

mc (&) 
(5) 

where the scaling function f(x) is constant for x <C 1, 
goes through a maximum at x = 1, and has an approx
imately Gaussian tail for x 3> 1. The typical mass mc 

of the chunks has a power-law dependence on the mesh 
size, m c = 0.304 £1-695 (Fig. 5), the exponent being in 
good agreement wi th the value of df, Eq. (3). 

The fractal chunks are only a tiny fraction of the total 
number of fragments, Nf. This fol lows f rom the fact that 
the width of the chunk-distribution is proportional to mc . 
Therefore, the number of chunks, Nc, divided by the 

FIGURE 6. Evolution of the packing in the lattice model. 
a)1st generation. The initial packing was cut by the indicated 
square mesh into fragments (£ = 32); b) 4 generation; c) 
10f/z generation; d) 20f/z generation; e) 40th generation; f) 100f/z 

generation. 

number of fragments, Nf, decreases wi th increasing mesh 
size l ike 

Nc 

Nf 
oc ffi (6) 

The fractal dimension of the chunks and the dust ex
ponent T are not independent of each other but obey the 
scaling relation 

df(2 - T ) = 1 . (7) 

The reason is the fo l lowing: As the chunk mass mc oc £df 
scales in the same way as the total mass per port ion, 
M/Np, the number of chunks per portion cannot depend 
on £. Using (4) and (6) one concludes that 

const. 
Afp 

gdf(1-T) gdf-1 (8) 

which proves (7). For df = 1.695 this implies % = 1.41. 
These values lead to an excellent data collapse for the 
fragment mass distributions (see Fig. 4 (inset)). 

We have seen, that the overwhelming number of frag
ments are dust particles, apart f rom a vanishing fraction 
(6) of chunks. This explains, why the mass (essentially 
mass of chunks) per fragment (essentially per dust parti
cle) has nothing to do wi th the fractal dimension, but is 
proportional to £ (see Fig. 3) . 

THE LATTICE MODEL 

In order to explore how universal the fractal substructure 
is, we studied another fragmentation-reagglomeration 
model. Here all particles live on a square lattice (of width 
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FIGURE 7. The steady state bulk density v as a function of 
the mesh size £ for the lattice model. 
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FIGURE 8. The box counting method (e being the box size) 
applied to the steady state bulk structure of the lattice model: 
Below the mesh size £, a fractal dimension of about 1.5 prevails. 

W and height H) with lateral periodic boundary condi
tions, which in each cycle is subdivided into square cells 
of size £ × £. Then, traversing from bottom to top and 
each row from left to right, the content of each cell is con
sidered. Disconnected fragments therein are identified 
and - without changing their orientation - subsequently 
deposited into an (initially empty) W × //-container at a 
randomly chosen horizontal position. Deposition means 
here, that the fragment sinks vertically until it forms the 
first vertical contact with the container bottom or a pre
viously deposited cluster. At this point it stops moving. 
In contrast to the ballistic deposition model [12] horizon
tal contacts have no effect for the deposition process, but 
they become as sticky as any other contact, once the frag
ment is at rest. As the fragments do not roll down until 
they form a second contact, the structure, see Fig.6, is 
more treelike than in Fig.1. 

In the following, we show results for a system with 
N = 226 particles (occupied lattice sites) in a container 
of width W = 4096. The mesh size ranges from £ = 
16,..., 256. Data are averaged over 6 independent runs, 
starting from initial conditions of randomly deposited 
single particles. As for the off-lattice model the system 
approaches a steady state in relaxation time n0 x £, i.e. 
the exponent z is 1. 

Figure 7 shows that the bulk volume fraction v in 
the steady state is a power law of the mesh size £ with 
a non-trivial exponent: v °= £<k-2 = ^-0.387±0.005 This 
indicates again a fractal substructure up to scale £ which 
is confirmed in Fig.8. The fractal dimension df = 1.5 ± 
0.1 obtained from the box counting method should be 
more reliable than the one extracted from the global solid 
fraction, Fig.7, because of the crossover from the fractal 
structure on small scales to the homogeneous density 
on scales larger than £. For the lattice model the fractal 
dimension seems to be a bit smaller than for the off-
lattice model. Lattice anisotropy has a similar effect on 
the fractal behaviour of DLA [13]. 
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