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In dense, static, polydisperse granular media under isotropic pressure, the probability density and the
correlations of particle-wall contact forces are studied. Furthermore, the probability density functions
of the populations of pressures measured with different sized circular pressure cells are examined. The
questions answered are: (i) What is the number of contacts that has to be considered so that the mea-
sured pressure lies within a certain error margin from its expectation value? (ii) What is the statistics
of the pressure probability density as function of the size of the pressure cell? Astonishing non-random
correlations between contact forces are evidenced that lead to a rapid decay of the width of the distribu-
tion and range at least 10–15 particle diameters. Finally, an experiment is proposed to tackle and better
understand this issue.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

One of the open issues in the field of disordered, random sys-
tems like dense, static granular packings, is the probability density
of the contact forces and their possible long range correlations.
There is a common agreement that the probability for large forces
decays exponentially [1–15] but the small forces are much harder
to measure [2,16,17], so that there is still ongoing discussion about
the shape of the probability density for small forces, possible cor-
relations between the forces, and a predictive model for the force
propagation inside dense packings of frictional particles [18].

Furthermore, it is observed that the deformation of particle sys-
tems is not affine in general, but displays finite distance correla-
tions which are assumed to increase when approaching the
jamming transition [6,19–27]. However, the issue whether these
correlations (and possibly anti-correlations due to vortex forma-
tion) depend on the system size [28] or not [29,30] is not com-
pletely resolved yet.

Since the forces that granular particles exert onto their con-
finement (walls) strongly fluctuate from one particle to the next,
so does also the local pressure. When the pressure on the wall is
measured with a circular pressure cell, performing many inde-
pendent measurements, one obtains a probability density of the
measured pressure, with its first moment approaching the mean
pressure, and the standard deviation decreasing with increasing
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cell size. While the case of uncorrelated forces is rather behaving
as expected, the case of subtly correlated forces in granular pac-
kings leads to interesting results and probably can be understood
with advanced statistical methods [34], which can e.g. account for
contact number fluctuations. Data on stress fluctuations in
sheared systems of frictional particles were reported in Refs.
[31–33]. Miller et al. [31] observed that the width of the distribu-
tion was rather independent of the particle size and thus weakly
dependent on the number of particles contributing to the stress
measured on their pressure cell. They attributed this to the fact
that force chains rather than single particles are carrying most
of the load so that they become responsible for the statistics
rather than the number of particle contacts. In our study we will
therefore simplify by switching off friction and shear and, instead
of varying particle size, we measure the pressure at the walls
with pressure cells of different sizes. Baran and Kondic [32,33],
on the other hand, observed that the width of the distribution de-
cays slower than for uncorrelated forces for larger averaging
times and attribute this to the absence of zero-force contacts.
Their system, however, was sheared in the collisional and thus
dynamic regime, unlike the quasi-static isotropically stressed sit-
uation considered in this study.

A local measurement of the wall pressure can be far away from
the total pressure (or the mean, representative pressure), unless
‘‘enough” particles are contained in the pressure cell. Besides the
question, how much ‘‘enough” is, also the question of the behavior
of the width of the pressure probability density is examined in this
study. The reason to examine the pressure distribution instead of
the force distribution is that the former is much easier to access
experimentally, as will be outlined at the end of this paper.
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Fig. 1. Normalized probability density p(f*) plotted against the normalized force
f* = f/hfi. The circles are simulation data, and the dashed and solid lines are Eqs. (1)
and (2), with C = 1.8, respectively. The inset shows the same data in log-scale,
together with the ‘‘quality factor”, i.e. the simulation data divided by the fit-
function as dots around unity; the fit has deviations less than 2% for f* < 3 and less
than 10% for f* < 5. The q-model, Eq. (1), is invalid for f* < 0.2 and has varying
deviations of about 10% for 0.2 < f* < 5.

Table 1
Fit results for different volume fractions m, where the row e contains the typical
relative error of the respective fit-parameter.

m a b c d

0.80 0.995298 0.477783 14.089 1.91749
0.70 0.971913 0.68069 7.72909 1.68119
0.68 1.00345 1.05915 5.127 1.54689
0.66 0.970768 1.11105 4.25643 1.47278
0.64 0.902126 0.507015 6.3781 1.57989
e [%] 1–4 15–23 11–20 2–4
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Fig. 2. The forces of particles that touch the walls fluctuate around a mean value.
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In general, more knowledge on the force- and pressure-density
functions is needed for the understanding of pressure measure-
ments aiming, for example, at a safe design of containers of gran-
ular materials such as silos.

The simplest model for the force probability density function is
the so-called q-model, introduced in 1995 by Liu, et al. [16,2], that
describes the occurrence of force chains based on uncorrelated prob-
abilistic assumptions. Even though there are many more advanced
models available that take into account the disorder and the geomet-
ric packings of granular media, see e.g. Refs. [14,15], we use the q-
model as starting point for convenience. In a dense packing of dis-
crete particles, the contact forces that one particle in a certain layer
feels from above plus its weight, determines the sum of the contact
forces on the particles below. The magnitude of the two forces at the
two contacts below, are the fractions q and 1 � q of the sum. In gen-
eral, the weights can also depend on neighboring sites and contacts
can open and close. The mean field approximation, however, ne-
glects these dependencies and thus simplifies the model vastly. Eq.
(1) gives us the normalized, scaled density function of the inter-par-
ticle forces f* = f/hfi, predicted by the q-model:

pqðf�Þ ¼
CC

ðC � 1Þ! f C�1
� expð�Cf�Þ; ð1Þ

where C is the number of the neighboring particles (below or
above). The weakness of the q-model is the improper prediction
of the probability to find small forces, see Fig. 1.

A function, that provides an excellent fit to the simulation data is

pf ðf�Þ ¼ 1� a exp �ðf� þ bÞ2

8

 ! !
c expð�df�Þ; ð2Þ

with the fit-parameters a = 0.983 ± 0.003, b = 0.56 ± 0.05,
c = 1.80 ± 0.02, and d = 10.4 ± 0.7. Note that a similar function was
found experimentally, see Refs. [35,36]. The number of parameters
can be reduced by using the normalization relations

R
pf df ¼ 1 andR

fpf df ¼ 1.1 The fit-parameters for different densities are given in
Table 1.
1 The factor eight in the denominator leads to some better fit-quality by stretching
the Gaussian correction function
2. Theory

Let us consider a cubical container filled with granular material
under isotropic, hydrostatic pressure. Each particle i of the Nw par-
ticles that touch a wall exerts a force fi (see Fig. 2) on the wall and
contributes to a (finite: 1 6 i 6 Nw) population of forces p(f) with
mean lw = hfi and standard deviation rw, where the subscript w re-
fers to the population of all wall-particle forces. If we select one
sample j of size n out of this population by applying a circular sen-
sitive area D(R) = pR2 that includes the n forces that are acting on
this area, we obtain the pressure (See Fig. 3)

PjðRÞ ¼ PjðnjðRÞÞ ¼
ð1=nÞ

Pn
j¼1fj

DðRÞ=n
¼ ð1=nÞ

Xn

j¼1

fj=D1; ð3Þ

with the area per particle, D1 = D(R)/n, and n = nj(R). Note that such
areas have to be selected such that their center – on the selected
wall – is at least a distance R away from any other wall. Taking
many samples, m� 1, will result in a population of pressure values
with probability density pR(P) around the mean
lP ¼ hPjðRÞi ¼ ð1=mÞ

Pm
j¼1PjðRÞ, with standard deviation

rP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
j ðRÞ

D E
� l2

P

r
;

where the subscript P refers to the population of pressures.

2.1. Central limit theorem

According to the central limit theorem (CLT), and for the corre-
sponding assumptions, the probability density function pR(P) of our
population of samples Pj(R) provides the same expectation value as
for the original population lP �

PNw
i¼1fi=A, where A denotes the total

surface of the confinement and the sum goes over all particles in
the system touching the walls.2 The CLT also tells us that the prob-
ability density function becomes more and more Gaussian:

gRðPÞ ¼
1ffiffiffiffiffiffiffi

2p
p

rP

exp �1
2

P � lP

rP

� �2
" #

; ð4Þ
2 This is valid under the assumption that all wall-particles are similar, i.e. there is
no inhomogeneity in the forces on the wall-particles, e.g. as function of distance from
another wall in the edges of the cuboid.
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Fig. 3. The average force of sample j, divided by the sensitive area D(R)/n per
particle, of this detector, leads to a pressure Pj(R) corresponding to one measure-
ment j.
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the larger we chose n, i.e., by increasing the detector size R. The
standard deviation then equals rP ¼ rPðRÞ ¼ ðnðRÞrwÞ=
DðRÞ

ffiffiffiffiffiffiffiffiffiffi
nðRÞ

p� �
¼ rw= D1

ffiffiffiffiffiffiffiffiffiffi
nðRÞ

p� �
¼: Pf =

ffiffiffi
n
p

, with the pressure Pf that
corresponds to the standard deviation of the force density function
scaled by the area of the pressure cell per particle.
Fig. 4. Snapshot of a dense, polydisperse assembly of N = 8000 particles confined in
a cuboid. The volume fraction here is m � 0.7 and the particle sizes are grey scaled
(bright particles are big, dark particles are small).
2.2. Confidence intervals

Integration from �1 to +1 of the normalized distributions
pR(P) and gR(P) gives unity. Now, to gain more advanced statistical
predictions about the pressure distribution, let us consider a lower
and an upper integration limit za/2 < lP and z1�a/2 > lP, respec-
tively, such that the integral over Eq. (4) equals

1� a ¼
Z z1�a=2

za=2

gRðPÞdP ¼ 1�
Z za=2

�1
gRðPÞdP �

Z 1

z1�a=2

gRðPÞdP

¼ 1
2

erf
z1�a=2 � lPffiffiffi

2
p

rP

� �
þ erf

lP � za=2ffiffiffi
2
p

rP

� �� �
: ð5Þ

If the integration limits are chosen such that a fractiona/2 lies outside
of the integration range, both to the left and the right, the integration
limits correspond to the confidence interval 2da = z1�a/2 � za/2; a
fraction 1 � a of the n measurements Pj lies within the confidence
interval.

Keeping n = const. and considering a = 0 (probability for finding
the measured value in-between our limits then equals 1), we ex-
pect that the interval of confidence tends to infinity. On the other
hand, for a = 1 (probability vanishes), one expects da ? 0.

Due to the symmetry of the Gaussian distribution, one can
compute

da :¼ z1�a=2 � lP ¼ lP � za=2; ð6Þ

explicitly, using the relation: ierfð1� aÞ ¼ da=
ffiffiffi
2
p

rP

	 

¼

da
ffiffiffi
n
p

=
ffiffiffi
2
p

Pf

	 

such that:

n ¼ 2ðPf =daÞ2ierf2ð1� aÞ; ð7Þ

where the pressure Pf = n(R)rw/D(R) = rw/D1 is, of course, a constant
for given geometry and p(f). The general Eq. (7) gives us information
about how many particles n need to be considered in a measuring
process, so that a measurement Pj(R) lies in-between the error mar-
gin ±da with probability 1 � a. Note, that da and n depend on the
size R of the sensitive area da / 1=

ffiffiffiffiffiffiffiffiffiffi
nðRÞ

p
/ 1=R.
2.3. Explicit predictions

2.3.1. q-model
Now we use the distribution predicted by the q-model for the

analysis. The first two moments obtained from Eq. (1) are �f ¼ hf i
and f 2 ¼ Cþ1

C hf i
2, which leads to the standard deviation pq(f),

namely rq
f ¼ ðf 2 � �f 2Þ1=2 ¼

ffiffiffiffiffiffiffiffiffi
1=C

p
; hf i. Considering Eq. (1) as a finite

population and applying the CLT by taking many samples, one can
then replace P2

f in Eq. (7) to get
nðqÞ ¼ 2
C

hf i
DðRÞ=n

� �2

ierf2ð1� aÞ 1
d2
a

¼ ð2=CÞierf2ð1� aÞðPf =daÞ2: ð8Þ
2.3.2. Best fit
Now we use the distribution as obtained by our fit to the data

for the analysis. The first two moments obtained from Eq. (2) are
�f � hf i; f 2 ¼ 1:61hf i2 and the corresponding standard deviation
can be computed to rfit

f ¼ 0:78hf i. In comparison with these results
the q-model provides rq

f ¼ 0:76hf i for a dense granular packing
with C = 1.8 corresponding to a special geometry.

3. Simulation

3.1. The system

The systems studied in the following contain N perfectly spher-
ical particles with radii ri drawn from a homogeneous distribution
ri 2 [rmin,rmax], where we used rmax/rmin = 2 and 3, and the mass
ð4=3Þpr3

i q, where q represents the uniform material density of
the particles. Since the mass is not relevant in the static limit, we
refer to density only with the dimensionless volume fraction
mf ¼ 4

3V p
PN

i r3
i , with volume V ¼

Q3
b¼1Lb, where Lb denotes the

length of the simulation volume in direction b with
{1,2,3} = {x,y,z}. All of the simulations were done in a cuboid vol-
ume which is limited by walls that repel touching particles. Fig. 4
gives an example of a typical static and dense granular sample,
while Fig. 5 shows a representative subset of particles that touch
a wall (Left) and the corresponding magnitudes of forces (Right),
quantified by the radius of the circles.

3.2. Molecular dynamics

The simulations were performed by means of a molecular
dynamics (MD) code in three dimensions, without tangential
forces like friction. MD simulations are characterized by discretiz-
ing time into time steps Dt and solving the Newton’s equations of
motion for each particle. In each integration step, the new position
of the particles is computed from its previous and present posi-
tions and accelerations due to forces currently acting on it [37].



Fig. 5. View of one of the walls for a packing with N = 20,000 particles with m � 0.67. (Left) Each circle is a particle in contact with the wall; the color coding is the same as in
Fig. 4. (Right) Same data as (left), but here each circle radius is scaled with the force exerted by the particle on the wall. (Big, bright circles correspond to large forces, whereas
small, dark circles correspond to small forces on the wall).
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MD is also referred to as discrete element method (DEM) or as soft-
sphere model, i.e. the repulsive forces fn normal to the plane
through the point of contact depend on the overlaps of the spheres,
that replace the contact deformation. The linear spring-dashpot
(LSD), the non-linear Hertzian model and a hysteretic force model
can be used [38], among many others. For particle-wall contacts,
the same spring constant were used as for contacts between parti-
cles. Here, only the LSD results are discussed because no qualitative
differences could be evidenced for the different contact laws.
 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2  2.5

p 
(P

*)
p 

(P
*)

P*

P*

R*=1
R*=2.5

R*=5
gR*=1

gR*=2.5
gR*=5

 0.1

 1

 10

 0  0.5  1  1.5  2  2.5  3

R*=1
R*=2.5

R*=5
gR*=1

gR*=2.5
gR*=5

Fig. 6. Probability density for the pressures from many samples with sizes R* = R/
rmax = 1.0, 2.5, and 5.0. Points are simulation data and lines correspond to Eq. (4) The
top panel shows the same data as the bottom panel, where the latter has a
logarithmic vertical axis.
3.3. Initial configurations and relaxation

As initial configurations, N = 8000 or N = 20,000 poly-disperse
particles with random initial velocities were placed on a regular
cubic lattice with low total density. Due to the free space between
the particles, the initial order is forgotten and the particles dissi-
pate energy during collisions. Eventually, the dense, relaxed and
disordered granular packing is obtained by either applying hydro-
static pressure on the walls or by growing the particles. Due to the
dissipative nature of the contact law, energy is dissipated and the
system reaches a static configuration, where we use as criterion
the ratio of kinetic and potential energy, Ekin/Epot = �, with
� 6 10�7. If � is small, the particles are typically almost at rest
and the major contribution to the total energy stems from the con-
tact potential energy between particles and the walls. Since the re-
sults were identical for the two preparation procedures, we only
mention that there are more alternative ways of achieving a static
packing, see [39], which is far from the scope of this study. Further-
more, we do not consider friction, since friction makes the packing
structure extremely dependent on the history and on the details of
the preparation procedure.
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Fig. 7. Scaled standard deviation rP/lP plotted against the size of the cells R* for
different Rmax. The symbols are simulation data, while the solid and the dashed lines
correspond to rP=lP ¼

ffiffiffi
n
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rw=ðpR2lPÞ and rP/lP / 1/R*, respectively.
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4. Results

In this section, we present the results concerning force probabil-
ity density functions. When scaled by their respective mean, the
particle–particle and particle-wall force probability density func-
tions were identical – within the considerably larger fluctuations
of the latter. The larger fluctuations are due to the smaller number
of wall contacts as compared to the bulk contacts. Since we are
interested in the experimentally accessible pressure measured at
the wall, we will not present bulk data in the following, except
for some qualitative comparison between wall and bulk results.

4.1. Width of probability distributions

When a circular measuring area with radius R is put around
each wall-particle (for all wall-particles with distance larger than
Rmax from any other wall), one obtains a set of Pj(R) values and,
from these, can compute the mean values and standard deviations.
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mean. The simulations were performed with N = 20,000 particles and LSD. The data
with slope of �1.5 obtained by our MD simulations reveal correlations between the
forces of the wall-particles because they do not match to theory, see Eq. (7), that
predicts a slope of �2. Data with slope of �2 are ‘‘faked” by replacing the forces by
uniformly distributed random forces.
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A typical set of wall-particles is shown in Fig. 5. Note that Rmax is
introduced, so that the same set of wall-particles is used for the
computation independent of R and, if Rmax/rmax becomes larger
than 12–13, the statistics becomes bad, since too few particles
close to the center of the wall are taken into account as the centers
of pressure cells.

For each sample with given R, from the corresponding pressures
Pj(R), the histograms are obtained, as shown in Fig. 6 for three dif-
ferent R-values.The larger the cell size, the more the pressure den-
sity function appears Gaussian and, as Fig. 7 shows, the smaller the
standard deviation rP becomes. Note, however, the interesting fact,
that the decay of rP is steeper than the simple relation rP / 1/R, ex-
pected from the central limit theorem.

Fig. 7 also contains steps for small cell sizes due to integer
jumps in the particle number n(R). For larger R, the change of rP

becomes smooth and independent of R*. For every kind of distribu-
tion of the population we should get – according to CLT – a Gauss-
ian distribution of the Pj(R) around the population mean. Eq. (7) is a
consequence of these simplifications. But our simulations show
hni / d�1:5

a (see Fig. 8) or, what is equivalent, deviations from the
Gaussian shape of the curves for large R as well. Note, that for very
small radii only a very small amount of particles will contribute to
the pressure, i.e., at least, the central particle will contribute to the
pressure.

These correlations vanish if we replace the forces in our data
files by randomly and uniformly distributed forces. These (faked)
data then show agreement with Eq. (7), see also Fig. 8, as expected,
and finally confirm that correlations do occur in our systems (sam-
ples of particles that contribute to the pressure measured at the
walls).

In a few systems, we also studied the correlations of the bulk-
pressure in cubical volumes of different sizes (data not shown).
The standard deviation of these data decays in close agreement
with the expectations from the central limit theorem. A more de-
tailed study of the range of the correlations goes beyond the scope
of this study, so that the question why the correlations occur only
at the walls remains open.

In order to check whether the correlations can be caused by the
fact that our sampling areas (pressure cells) have overlap, we stud-
ied the statistics with randomly leaving out 80% or 90% of the sam-
ples, with no significant change in the conclusions (besides some
worse statistics).
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4.2. Correlation function

An alternative way to examine the correlations in a set of forces
is to compute the correlation function

CðrÞ ¼ hfifjðrÞi
hfiihfjðrÞi

; ð9Þ

where the fa are the forces of the center particles, for a = i, and of all
other particles at distance r in the pressure cells, for a = j. As dis-
played in Fig. 9 (Left), the correlations decay about two orders of
magnitude within a distance of approximately 15 particle (maxi-
mal) radii. For small R�max, this contrasts the results from the confi-
dence interval (or standard deviation) measurements, where no
change of behavior could be evidenced. These results do not change
for larger R�max.

The data for different densities in Fig. 9 (Right) show that the
correlations decay much faster for larger densities. Note that there
is no qualitative difference visible when one examines r/lP as
function of RP* for different densities: The absolute values decrease
with increasing density, but the slope of �3/2 remains indepen-
dent of the density (data not shown). Thus, in conclusion, the pres-
sure cell approach is capable of detecting a different type of
correlations, which is not caught by the classical correlation func-
tion approach.

5. Conclusions

From numerical simulations of static, frictionless and isotropi-
cally compressed packings, we extract the probability distribution
of the stresses on circular sensors at the walls. The width of the dis-
tribution decays more rapidly than expected from the central limit
theorem (CLT) for uncorrelated forces, which is in contrast to pre-
vious observations [31–33] on sheared, dynamic, and frictional
particle systems.

Our main objective was to determine how the number of parti-
cles contributing to the pressure on a given sensor correlate with
the interval of confidence, which is a measure for the width of
the pressure density functions. As expected, the confidence inter-
val increases the smaller the detector size is chosen, i.e., the worse
the statistics becomes. Surprisingly, the relation hn(R)i / da(R)�1.5

is observed, i.e. for a certain amount of particles, given a desired
probability 1 � a, the measured pressure values can be expected
to be closer to the average, hP(R)i, as assumed from CLT. Thus,
our simulations predict a better confidence in measured data.

As a possible reason for this, one has the correlations between
forces exerted by close-by particles on the walls. These correlations
range over a rather long distance. The limited sensor size (and the
related fluctuations of particle numbers) was excluded as source of
this effect, because we found hn(R)i / da(R)�2 for a fully random
(uncorrelated), uniform force distribution.

Finally, we note that our systems were rather small, so that we
cannot exclude the possibility that our observations are due to a fi-
nite size effect. Also the possibility of correlations due to the over-
lapping pressure cells cannot be excluded (avoiding the overlap
leads to prohibitively bad statistics). Therefore, much larger simu-
lations should be performed to confirm the present results and bet-
ter understand the source of the correlations as evident from the
width of the pressure probability density function.

Furthermore, we analysed our simulation data mainly at the
walls, so that a direct experimental access to the same information
is possible. Thus, the pressure correlations presented here should
be confronted more systematically to bulk stress data (of both iso-
tropic and deviatoric stresses) in order to learn if this is a wall ef-
fect or intrinsic also to bulk particulate systems, with force chains
and the respective correlations, also far away from the walls.
Future studies should involve more realistic material properties
like friction, and more realistic particle shapes as well as the study
of cohesive, humid or saturated systems – all under dynamic driv-
ing or, e.g., shear.
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