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The dynamics of dissipative soft-sphere gases obeys Newton’s equations of motion, which are commonly
solved numerically by (force-based) Molecular Dynamics (MD) schemes. With the assumption of instantaneous,
pairwise collisions, the simulation can be accelerated considerably using event-driven MD, where the coefficient
of restitution is derived from the interaction force between particles. Recently it was shown, however, that this
approach may fail dramatically, that is, the obtained trajectories deviate significantly from the ones predicted
by Newton’s equations. In this paper, we generalize the concept of the coefficient of restitution and derive a
numerical scheme which, in the case of dilute systems and frictionless interaction, allows us to perform highly
efficient event-driven MD simulations even for noninstantaneous collisions. We show that the particle trajectories
predicted by our scheme agree perfectly with the corresponding (force-based) MD, except for a short transient
period whose duration corresponds to the duration of the contact. Thus, the new algorithm solves Newton’s
equations of motion like force-based MD while preserving the advantages of event-driven simulations.
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I. INTRODUCTION

Modeling granular systems of frictionless spheres branches
into two fundamental different approaches: hard- and soft-
sphere models. The dynamics of soft spheres are governed by
the pairwise interaction forces between contacting particles
as a function of the relative particle positions and velocities
as well as material parameters, �Fij = �Fij (�ri,�rj ,�̇ri,�̇rj ). The
dynamics of a many-particle system is then obtained by
numerically solving Newton’s equation of motion for all
degrees of freedom, which was termed Molecular Dynamics
(MD), e.g., in Ref. [1]. The first MD simulations of granular
systems (in the engineering literature also called the Discrete
Element Method [DEM]) range back to pioneering work
by Cundall, Walton, Haff, and others, e.g., Refs. [2–5]. An
overview of the force models specific for granular particles
can be found in Refs. [6–8].

In contrast to soft-sphere models, in hard-sphere models
the collisions are assumed to occur instantaneously, which
allows one to consider the dynamics of hard-sphere systems
as a sequence of independent binary collisions. Except for
collisions where the velocities change instantaneously, the
particles follow ballistic trajectories, possibly under the in-
fluence of external fields like gravity. The hard-sphere model
is the foundation of both Kinetic Theory of granular matter
based on the Boltzmann equation, e.g., Refs. [9–11], and
event-driven Molecular Dynamics (eMD) of granular matter,
e.g., Refs. [12–14].

The collision of two hard spheres of velocities �̇ri and �̇rj

implies an instantaneous exchange of momentum:

(�̇r ′
i − �̇r ′

j ) · �e ′
r = −εn

(�̇r 0
i − �̇r 0

j

) · �e 0
r (1)

with the time-dependent intercenter unit vector �er ≡ (�ri −
�rj )/|�ri − �rj | and the coefficient of normal restitution εn.
Upper index 0 denotes values just before the collision, primed
values denote postcollisional values. Unlike the velocities,
the particles’ positions remain unchanged because of the
instantaneous character of the collision, therefore,

�e ′
r ≡ �e 0

r (2)

and Eq. (1) reduces to

(�̇r ′
i − �̇r ′

j ) · �e 0
r = −εn

(�̇r 0
i − �̇r 0

j

) · �e 0
r . (3)

Equation (3) relating the pre- and postcollisional velocities
is the governing equation of eMD. Given a certain granular
system may be described by the hard-sphere model, eMD
allows for a vast increase of numerical efficiency as compared
with corresponding MD simulations. For a very efficient
implementation of eMD see Ref. [15].

Despite eMD’s great numerical performance, the hard-
sphere model is a simplification of physical reality: Instanta-
neous changes of velocity imply infinite delta-shaped forces,
while forces between colliding physical objects are always
finite, which implies finite contact duration. Therefore, the
applicability of the hard-sphere model for eMD simulations of
granular systems must be checked. One obvious precondition
for eMD is low enough particle number density such that
the frequency of three-particle contacts can be neglected as
compared to the frequency of pair collisions. Obviously this is
not given for slow flows with long-lasting contacts.

A natural way to check the validity of the hard-sphere
approximation in the dilute limit is the following: The
coefficient of normal restitution as a function of material
parameters and relative impact velocity may be obtained from
analytically integrating Newton’s equation of motion for the
central collision of an isolated pair of particles using the known
interaction force, which is also a function of material properties
and impact velocity; see, e.g., Refs. [16–19]. Performing MD
simulations using the interaction force and eMD simulations
using the corresponding expression for the coefficient of resti-
tution, one may expect identical trajectories. However, recently
it was found that these trajectories may deviate significantly
for a vast range of materials, collision geometries, and impact
velocities [20,21], in particular for oblique impacts, which
concerns the majority of impact geometries [20] in a Molecular
Chaos situation. Consequently, even for dilute systems, the
hard-sphere approximation may fail dramatically. This effect
may be attributed to the finite duration of collisions in physical
systems, which does not allow for the assumption (2).
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Consequently, on one hand we have the stunning efficiency
of eMD based on the hard-sphere model. On the other
hand there is the universality and physical correctness of the
soft-sphere model leading to MD. Combining the advantages
of both approaches is a highly desired aim. Concerning
simulation techniques, an attempt is to discretize the (smooth)
interaction potentials. As this idea was originally developed
for liquids [22,23], recently it was also applied to granular
systems [24–26]. On the theoretical side there are perturbation
theories extending hard-sphere models [27–29].

In this work we derive an algorithm for the event-driven
simulation of smooth spheres which does not rely on Eq. (2).
By extending the concept of the coefficient of restitution,
we map the correct Newtonian dynamics of soft spheres to
instantaneous events. We show that for dilute systems of
frictionless particles the presented method allows for a correct
computation of the trajectories (as MD) while preserving the
efficiency of event-driven simulations.

This simulation method applies to a wide range of particle
interaction forces. Here we demonstrate it for the case of two
important examples: the linear dashpot model and viscoelastic
spheres. Unlike the original eMD method, we show that in
these cases the trajectories obtained by eMD agree perfectly
with the MD results.

II. COLLISION OF SPHERES

Consider two colliding spheres of masses mi and mj located
at �ri(t) and �rj (t) and traveling with velocities �̇ri(t) and �̇rj (t).
With the interaction force �F , their motion is described by

meff �̈r = �F, M �̈R = �0, (4)

where

�R ≡ mi�ri + mj �rj

mi + mj

, �r = �ri − �rj , meff = mimj

mi + mj

(5)

are the center of mass coordinate, the relative coordinate and
the effective mass, respectively. The center of mass moves
due to external forces such as gravity and separates from the
relative motion, which in turn contains the entire collision
dynamics.

For frictionless particles, the interaction force acts in the
direction of the intercenter unit vector, �F = Fn�er . During the
collision the (orbital) angular momentum is conserved, which
allows for the definition of the constant unit vector �eL:

�L = meff �r × �̇r ≡ L�eL. (6)

Thus, with the coordinate system � spanned by

�ex ≡ �e 0
r , �ez ≡ �eL, �ey ≡ �ez × �ex, (7)

and with its origin in the center of mass �R, the collision takes
place in the �ex-�ey–plane.1 In the collision plane we formulate
the equation of motion in polar coordinates {r,ϕ} (see Fig. 1):

meff r
2ϕ̇ = L, meff r̈ = Fc + Fn = meff rϕ̇

2 + Fn, (8)

1For central collisions we have �L = �0. In this case �ez may be any
unit vector perpendicular to �ex , (�ex · �ez = 0).

FIG. 1. Illustration of the used polar coordinates (see text).

with the centrifugal force Fc. Together with the initial
conditions

r(0) = r0, ṙ(0) = ṙ0, ϕ(0) = 0, (9)

Eq. (8) fully describes the collision dynamics for an arbitrary
normal force Fn. The collision terminates at time t = τ where
[16,17]

ṙ(τ ) > 0 and Fn = 0. (10)

Measuring time in units of T , length in units of X, and
angles in units of Φ, and using the dimensionless quantities

r̃ = r

X
, t̃ = t

T
, and ϕ̃ = ϕ

Φ
(11)

we obtain the scaled form of the equation of motion [Eq. (8)]:

dϕ̃

dt̃
= cϕ

r̃2
,

d2r̃

d t̃2
= r̃

(
dϕ̃

dt̃

)2

Φ2 + Fn

meff

T 2

X
, (12)

where X and T are length and time scales typical for the given
normal force Fn, Φ is an arbitrary scale for measuring angles,
and cϕ reads

cϕ = T

ΦX2

L

meff
. (13)

The corresponding dimensionless initial conditions read

ϕ̃(0) = 0, r̃(0) = r(0)

X
, and

dr̃

dt̃
(0) = ṙ(0)

T

X
. (14)

According to Eq. (10) the scaled contact duration reads τ̃ ≡
τ/T .

III. COEFFICIENT OF RESTITUTION VERSUS MATRIX
OF RESTITUTION

Solving the scaled equation of motion (12) for the initial
conditions (14) in the time interval 0 � t̃ � τ̃ , that is, from the
beginning of the collision at time t̃ = 0 until its end at t̃ = τ̃

[see Eq. (10)] we obtain the postcollisional values ϕ̃(τ̃ ), ˙̃ϕ(τ̃ ),
r̃(τ̃ ), and ˙̃r(τ̃ ), which determine the state of the system at the
end of the collision.

Note that for the special case of central collisions with van-
ishing angular momentum, the state would be fully described
by r̃(τ̃ ) and ˙̃r(τ̃ ) as the other values vanish or are invariant.
Together with the hard-sphere assumption [Eq. (2)], we are left
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FIG. 2. Eccentric collision of spheres.

with only ˙̃r(τ̃ ), which allows us to characterize the collision
by a single number, the coefficient of restitution,

εn = −
˙̃r(τ̃ )
˙̃r(0)

. (15)

Therefore, εn ∈ [0,1] for central collisions.
Equation (15) provides the link between the hard-sphere

and the soft-sphere models and, correspondingly, between MD
and eMD since it relates the coefficient of restitution with the
specific interaction force. The analytical solution of Eq. (15)
is frequently nontrivial, even for rather simple forces as the
viscoelastic Hertz force [17,19]. As a result from the solution
of Eq. (15) we obtain the coefficient of normal restitution as
a function of the force’s material specifics, particle sizes, and
impact rate.

Obviously, only for the special case of central collisions
of vanishing duration, εn is sufficient to characterize collisions
since otherwise ϕ̃(τ̃ ) and ˙̃ϕ(τ̃ ) do not vanish and r̃(τ̃ ) �= r̃(0). It
was shown for ordinary material and impact parameters that the
mentioned postcollisional quantities are not negligible [20].
If one overlooks this fact, the coefficient of restitution must
depend on the impact parameter d (see Fig. 2). Depending on
d it can adopt even negative values [21]. Therefore, we believe
that knowing the coefficient of restitution, εn, is not sufficient
to perform particle simulations.

Following the previous arguments, besides the ordinary
coefficient of normal restitution, we define further coefficients
which together characterize the collision completely. These
are

εr ≡ r̃(τ̃ )

r̃(0)
, (16)

which stands for distance of the colliders at the end of the
collision. Naı̈vely one could believe εr = 1 since the particles
lose contact when |�ri − �rj | = Ri + Rj . However, as shown
in Refs. [16,17], the latter condition is not correct and leads
to erroneous attractive forces even if the interaction force
between the particles was assumed purely repulsive. In fact,
εr � 1.

The next coefficient,

εϕ ≡ ϕ̃(τ̃ ), (17)

represents the rotation of the normal vector �er during the
collision, measured in units of Φ. It is defined by �e 0

r · �e ′
r =

cos(εϕΦ).
The change of the corresponding rotation velocity is

described by a further coefficient,

εϕ̇ ≡
˙̃ϕ(τ̃ )
˙̃ϕ(0)

. (18)

Using the conservation of angular momentum, L =
meff r

2(t)ϕ̇(t), we see that this coefficient is redundant and
may be expressed through εr :

εϕ̇ =
[

r̃(0)

r̃(τ̃ )

]2

=
(

1

εr

)2

. (19)

The propagation of time is accounted for by

εt ≡ τ̃ , (20)

which holds the scaled contact time. It is obviously needed
since time is also a variable which changes during a mechanical
contact. Its meaning becomes clear if one looks to the
center of mass coordinate �R, which is not affected by the
collision due to momentum conservation. To determine its
postcollisional value, one needs to know the time when the
collision terminates.

Finally we need

εṙ ≡
˙̃r(τ̃ )
˙̃r(0)

, (21)

which is (up to the sign) the ordinary coefficient of normal
restitution including the influence of centrifugal forces occur-
ring for noncentral collisions, −εṙ = εn.

Following the arguments of the previous section, the state
of the colliding particles is completely determined by r(t),
ṙ(t), ϕ(t), ϕ̇(t), and t . If we define

�χ (0) ≡

⎛
⎜⎜⎜⎜⎜⎝

r 0

ṙ 0

Φ

ϕ̇ 0

T

⎞
⎟⎟⎟⎟⎟⎠ , (22)

Eqs. (16)–(21) establish then a complete set of equations to
compute the postcollisional state, �χ (τ ), from the precollisional
one, �χ (0).

We arrange the coefficients given in Eqs. (16)–(21) in form
of the matrix of restitution:

ε̃ =

⎛
⎜⎜⎜⎜⎜⎝

εr 0 0 0 0

0 εṙ 0 0 0

0 0 εϕ 0 0

0 0 0 1/ε2
r 0

0 0 0 0 εt

⎞
⎟⎟⎟⎟⎟⎠ , (23)

such that the collision dynamics is described by the propagator

�χ(τ ) = ε̃ �χ (0), (24)

which has exactly the same functional form as a the traditional
propagator rule [Eq. (15)].

Similar to Eq. (15), which is the basic equation of eMD
under the simplifying assumption [Eq. (2)] of instantaneous
collisions, Eq. (24) will be the basic equation of our general-
ized eMD, which does not rely on instantaneous collisions.
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IV. IMPROVED COLLISION RULE

In traditional eMD simulations the particles move along
straight lines or ballistic trajectories under the influence of
constant external fields like gravity, interrupted by instanta-
neous events (collisions) where their velocities are adjusted
according to the collision law. That is, the collision law does
not change the positions of the particles.

The new propagator [Eq. (24)] requires that the correspond-
ing collision law changes both the velocities and the positions
of the particles. The change of the position in a collision will
cause some problems in simulations; namely, it may happen
that the designated positions are occupied by other particles.
This problem will be addressed in Sec. VI B.

In the present section, we detail the update of the particles’
velocities and positions, provided the new positions are not
occupied. We describe how to apply the matrix of restitution
ε̃ to obtain the postcollisional coordinates �r ′

1, �r ′
2, �v ′

1, �v ′
2 from

the precollisional coordinates �r 0
1 , �r 0

2 , �v 0
1 , �v 0

2 for a given set of
material parameters and particle masses. For convenience, we
use two (fixed) reference frames: The laboratory system �L

(spanned by �e L
x , �e L

y , �e L
z ) and � as defined in Sec. II [Eq. (7)]. X̂

indicates, that the vector X is expressed in the reference frame
�. Vectors without a hat are expressed in �L, respectively.

A. Position update

The base vectors of the laboratory frame �L expressed in
� read

�̂e L
i =

⎛
⎜⎝

�e L
i · �ex

�e L
i · �ey

�e L
i · �ez

⎞
⎟⎠ . (25)

The direction of the relative coordinate �e ′
r after the collision

reads

�̂e ′
r =

⎛
⎜⎝

cos(εϕΦ)

sin(εϕΦ)

0

⎞
⎟⎠ , (26)

expressed in the reference frame �. The corresponding vector
expressed in �L reads

�e ′
r =

⎛
⎜⎝

�̂e ′
r · �̂e L

x

�̂e ′
r · �̂e L

y

�̂e ′
r · �̂e L

z

⎞
⎟⎠ . (27)

The distance r ′ between the two spheres after the collision is
given by

r ′ = r0εr , (28)

where r0 is its precollisional value. With this, the vector
pointing from the origin of � to particle 1 after the collision
reads

��r ′
1 = − m2

m1 + m2
r ′ �e ′

r , (29)

expressed in the laboratory frame �L. The corresponding
vector pointing to particle 2 reads

��r ′
2 = m1

m1 + m2
r ′ �e ′

r . (30)

The center of mass coordinate after the collision reads

�R′ = �R0 + �̇R0εtT (31)

expressed in the laboratory frame.
With this, the postcollisional particle positions expressed in

the laboratory frame read

�r ′
i = �R′ + ��r ′

i . (32)

B. Velocity update

The angular velocity at the instant of collision is given by

ϕ̇0 = L

meff (r0)2 . (33)

The corresponding postcollisional value reads

ϕ̇′ = ϕ̇(0)

ε2
r

. (34)

The derivative of the unit vector of the postcollisional relative
coordinate reads

�̂e ′
ṙ =

⎛
⎜⎝

−ϕ̇′ sin(εϕΦ)

ϕ̇′ cos(εϕΦ)

0

⎞
⎟⎠ (35)

in the reference frame �. The corresponding vector expressed
in the laboratory frame �L reads

�e ′
ṙ =

⎛
⎜⎝

�̂e ′
ṙ · �̂e L

x

�̂e ′
ṙ · �̂e L

y

�̂e ′
ṙ · �̂e L

z

⎞
⎟⎠ . (36)

The normal component ṙ ′ of the relative velocity between the
two spheres after the collision is given by

ṙ ′ = ṙ0εṙ , (37)

where ṙ0 is its precollisional value. With this, the postcolli-
sional velocity of the particles measured from the origin of �

expressed in the laboratory frame �L reads(
��v ′

1

��v ′
2

)
=

(−m2

m1

)
1

m1 + m2
(ṙ ′�e ′

r + r ′�e ′
ṙ ). (38)

With this, the postcollisional velocities expressed in the
laboratory frame read

�v ′
i = �̇R′ + ��v ′

i . (39)

In the absence of external fields we have �̇R′ = �̇R0.
Together with the matrix of restitution [Eq. (23)] Eqs. (32)

and (39) establish a complete set of equations for the
computation of the postcollisional positions and velocities
from the precollisional values.

V. COLLISION OF GRANULAR PARTICLES

The previous section provides a general way to perform
event-driven simulations of soft particles; that is, the hard-
sphere approximation [Eq. (2)] is not exploited. So far,
however, we did not specify the particle interaction force which
determines the properties of the matrix of restitution [Eq. (23)].
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In this section we consider two widely used models
for the interaction force Fn, the linear dashpot model and
the model of viscoelastic spheres, to obtain the matrix of
restitution [Eq. (23)]. Both models are characterized by many
material and system parameters, thus, the components of
the matrix of restitution are functions of these parameters.
Since, for both force models, an analytical evaluation is not
possible, by appropriate scaling we reduce the problem to
three independent parameters, leading to a convenient way for
computing efficient lookup tables for the matrix of restitution.

Together with the collision rule [Eqs. (32) and (39)], the
results of this section allow for highly efficient event-driven
simulation of granular gases of soft spheres.

A. Linear-dashpot model

The linear-dashpot model is widely used in the literature for
the simulation of granular systems. Its physical relevance may
be questioned since neither the elastic [31] nor the dissipative
part of the force [32] agree with physical reality. It even violates
a dimension analysis [18]. Its main characteristic is that in
the hard-sphere limit it leads to a coefficient of restitution
which is independent of the impact velocity (which disagrees
with experiments as well; e.g., Ref. [33]). Although physically
questionable, the linear-dashpot model is widely used since its
consequence, the constant coefficient of restitution, simplifies
the analytical analysis largely. Therefore, except for very few
examples, e.g., Refs. [34–37], virtually the entire Kinetic
Theory of granular gases relies on this assumption.

The linear-dashpot model defines the normal force between
colliding spheres by

Fn = k(l − r) − γ ṙ, (40)

with l ≡ R1 + R2, and k and γ being the spring constant and
the dissipative parameter. With this force and the scaling [see
Eq. (11)],

Φ ≡ 1, T ≡ 1

ω
, X ≡ ṙ(0)

ω
, ω ≡

√
k

meff
, (41)

from Eq. (12) we obtain the equations of motion

dϕ̃

dt̃
= cϕ

r̃2
,

d2r̃

d t̃2
= c2

ϕ

r̃3
+ (l̃ − r̃) − cdis

dr̃

dt̃
, (42)

where

l̃ ≡ l

X
, cdis ≡ γ T

meff
. (43)

We solve Eq. (42) with the initial conditions [see Eq. (14)]

ϕ̃(0) = 0, r̃(0) = l̃, and
dr̃

dt̃
(0) = −1 (44)

for a given set of {l̃,cϕ,cdis} in the interval 0 � t̃ � τ̃ , where
τ̃ is the time where the collision ceases given by the condition
(10). The matrix of restitution [Eq. (23)] is then obtained by
using the definitions of its components, Eqs. (16)–(18), (20),
and (21).

The reduced set of parameters, {l̃,cϕ,cdis}, follows from
material parameters (k, γ , mass density ρ), particle sizes (R1,
R2), and impact parameters (impact velocity v and eccentricity
e ≡ d/l; see Fig. 2).

TABLE I. Space of physical parameters used to obtain the matrix
of restitution for the linear-dashpot model. For the definition of impact
velocity and eccentricity see Fig. 2.

Unit Min. Max.

k [103 N/m] 1 1000 Spring constant
R [m] 0.001 0.1 Particle radius
ρm [kg/m3] 250 3250 Material density
γ [kg/s] 0.01 1.25 Dissipative parameter
v [m/s] 0.001 25 Impact velocity
d/l – 0.01 0.99 Eccentricity

For practical application, we need the matrix of restitution
[Eq. (23)] for a wide range of the (physical) system parameters,
corresponding to a certain area in the {l̃,cϕ,cdis} space of
complicated shape. For elastic spheres (γ = 0), the intervals
for the physical parameters given in Table I lead to the area in
the {l̃,cϕ,cdis} space shown in Fig. 3 showing εϕ as a function
of l̃ and cϕ .

We switch now from (l̃,cϕ,cdis) to a new set of independent
parameters, such that the parameter space is bound by per-
pendicular straight axis. This is necessary for the numerically
efficient access to the elements of the matrix of restitution
(represented as a lookup table) needed for efficient eMD
simulations.

From the definitions Eq. (13) and Eq. (6), X ≡ l/l̃, and the
geometry of the collision (Fig. 2) we find

ln cϕ = ln l̃ − 1

2
ln

(
1

e2
− 1

)
, (45)

which indicates that for a given impact eccentricity, e, all
possible {ln l̃, ln cφ} pairs are located on a straight line of slope
1 [20] with −4.6 � − 1

2 ln( 1
e2 − 1) � 1.95 for the parameters

given in Table I. That is, for a given l̃ the smallest accessible

FIG. 3. (Color online) The space of physical parameters given in
Table I translates into a space of the scaled parameters (cϕ/c

min
ϕ ,l̃/l̃min)

of complex shape. The figure shows one of the elements of the matrix
of restitution, εϕ , as a function of the scaled variables, for the special
case γ = 0 (elastic collisions). Each point of the colored region
corresponds to a point in the physical space given in Table I. The white
regions are inaccessible within the chosen set of physical parameters.
Expressions for cmin

ϕ and l̃min are given in Eqs. (13) and (43).
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cϕ is given by

ln cmin
ϕ ≡ ln l̃ − 1

2
ln

[
1

(emin)2
− 1

]
= ln l̃ + gmin (46)

with gmin ≈ −4.6. By switching to ln cϕ/cmin
ϕ , the lines of

constant eccentricity e in the {ln l̃, ln cφ} space are hence raised
to straight vertical lines (see Fig. 3).

Further, from the definition of l̃ (43), the scaling (41), and
geometry, we obtain

l̃ = lω

v
√

1 − e2
. (47)

Using Eq. (45), we express e in terms of l̃ and cφ and end up
with

ln l̃ = ln

(
lω

v

)
+ 1

2
ln

[
1 +

(
cϕ

l̃

)2]
. (48)

For the physical parameters in Table I we obtain −2.3 �
ln( lω

v
) � 14.83; thus, for a given impact eccentricity, the

smallest attainable l̃ is hence given by

ln l̃min = mmin + 1

2
ln

[
1 +

(
cϕ

l̃

)2]
, (49)

with mmin ≈ −2.3.
Consequently, if we would plot Fig. 3 with axis ln cϕ/cmin

ϕ

(instead of ln cϕ) and ln l̃/l̃min (instead of ln l̃), the accessible
data points would form a rectangular area. Thus, the compli-
cated shaped colored region in Fig. 3 is transformed into a
rectangle, which allows for an efficient use of a corresponding
lookup table in eMD simulations. The generalization to
inelastic particles is straightforward.

The inverse transformation from {ln cϕ/cmin
ϕ , ln l̃/l̃min} to

{ln cϕ, ln l̃} is obtained directly from the definitions of
ln cϕ/cmin

ϕ and ln l̃/l̃min:

ln l̃ = ln
l̃

l̃min
+ mmin + 1

2
ln

[
1 + e

2(ln
cϕ

cmin
ϕ

+gmin)
]
,

(50)
ln cϕ = cϕ

cmin
ϕ

+ ln l̃ + gmin.

Figure 4 shows the components of the matrix of restitution
[Eq. (23)] for the linear dashpot interaction force [Eq. (40)] and
the range of physical parameters specified in Table I. Each row
corresponds to a certain (scaled) dissipative constant ln cdis; see
Eq. (43).

The first column of Fig. 4 displays εϕ [see Eq. (17)], which
describes the rotation of the interparticle unit vector �er during
the contact. This rotation angel is determined by the contact
duration, τ , and the rotation velocity, ϕ̇. If we would disregard
centrifugal forces, the rotation velocity would be constant. As
the contact duration decreases with inelasticity the rotation
angle, thus, εϕ also decreases with inelasticity. Regarding the
component εϕ , elastic collisions hence represent the marginal
case [20].

The second column in Fig. 4 [see Eq. (21)] shows εṙ .
The coefficient εn = −εṙ is the well-known coefficient of
normal restitution including effects due to centrifugal forces. It

describes the loss of energy of the particles’ relative velocity in
normal direction, due to the collision. From this interpretation
follows that −εṙ decreases with increasing dissipation for all
combinations of {ln cϕ/cmin

ϕ , ln l̃/l̃min}.
The coefficient εr [see Eq. (16)], shown in the third column

of Fig. 4, stands for the ratio of the post- and precollisional
distance of the particles. Due to the premature end of collision
[Eq. (10); see Refs. [16,17] for an in-depth discussion] the
value of εr may differ from 1 for inelastic collisions (γ > 0).
For impacts leading to large rotation velocity, ϕ̇, the coefficient
εr may significantly deviate from unity because of centrifugal
forces. While dissipative forces cause a premature end of the
collision, they also reduce the rotation velocity. Consequently
there is an optimal value for the damping coefficient, γ (or its
scaled value cdis), which minimizes εr .

The last column of Fig. 4 shows the component εt [see
Eq. (20)], which stands for the collision duration measured
in units of the characteristic time T [see Eq. (11)]. The
absolute value of εt decreases with damping since due to the
premature end of collision, the contact duration, τ , decreases
with increasing dissipation.

B. Viscoelastic spheres

The normal component of the interaction force between
two colliding viscoelastic spheres reads

Fn = F el
n + F dis

n = ρel(l − r)3/2 − 3
2Aρelṙ

√
l − r, (51)

where

ρel ≡ 2Y
√

Reff

3(1 − ν2)
(52)

and Y , ν, and Reff denote the Young’s modulus, the Pois-
son’s ratio, and the effective radius Reff = R1R2/(R1 + R2),
respectively. The elastic part F el

n of this widely used collision
model [6–8] is given by the Hertz contact force [31]. The
dissipative part, F dis

n , was first motivated in Ref. [38] and then
rigorously derived in Refs. [32,39], where only the approach in
Ref. [32] leads to an analytic expression for the parameter A,
being a function of the elastic and viscous material parameters;
see Ref. [32] for details.

Using the normal force [Eq. (51)] and the scaling relation
[Eq. (11)] with

Φ ≡ 1, T ≡ 1

k2/5(−ṙ0)1/5
, X ≡ (−ṙ0)4/5

k2/5
, (53)

where k ≡ ρ/meff, the general equation of motion [Eq. (12)]
reads

dϕ̃

dt̃
= cϕ

r̃2
,

d2r̃

d t̃2
= c2

ϕ

r̃3
+ (l̃ − r̃)3/2 − cdis

dr̃

dt̃

√
l̃ − r̃ , (54)

where cdis ≡ 3A
2T

.
Proceeding along the lines of Sec. V A, we solve Eq. (54)

with the initial conditions [Eq. (44)] for a given range
of physical parameters to obtain the matrix of restitution
[Eq. (23)]. The intervals of parameters specified in Table II
cover a wide range of applications.

The set of physical parameters can be transformed in a set
of scaled variables, {l̃,cϕ,cdis}. Again, the specified ranges of
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FIG. 4. (Color online) Components of the matrix of restitution [Eq. (23)] for the linear-dashpot interaction force [Eq. (40)] and some values
of ln cdis. Abscissa of all panels: ln cϕ/c

min
ϕ . Ordinate of all panels: ln l̃/l̃min. The range of scaled parameters (cϕ,l̃) corresponds to the physical

parameters space defined in Table I.

physical parameters correspond to a region in the {l̃,cϕ,cdis}-
space of complicated shape. As in the case of the linear-dashpot
model we look for a transformation such that the admitted sets
of parameters establish a rectangular system.

The parameters of the force do not enter Eq. (45); therefore,
it holds true for viscoelastic spheres too. Since the marginal
values for the impact eccentricity, e, remain (same ranges in
Tables I and II), again gmin = −4.6.

The corresponding equation to Eq. (48) valid for the linear-
dashpot model reads

ln l̃ = ln

[
l

(
k

v2

)2/5]
+ 2

5
ln

[
1 +

(
cϕ

l̃

)2]
(55)

for the case of viscoelastic spheres. Using the parameters from
Table II we obtain for the first term

0.75 ≈ mmin < ln

[
l

(
k

v2

)2/5]
< mmax ≈ 13.66. (56)

With this we define

ln l̃min = mmin + 2

5
ln

[
1 +

(
cϕ

l̃

)2]
. (57)

In the same way as for the linear-dashpot force, we use
[ln(cϕ/cmin

ϕ ), ln(l̃/l̃min)] instead of [ln cϕ, ln l̃] as independent
variables. While the domain of physical parameters (Table II)
is represented by an area of complex shape in the coordinates
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TABLE II. Parameter space scanned to obtain the matrix of
restitution for viscoelastic spheres. For the definition of impact
velocity and eccentricity see Fig. 2.

Unit Min. Max.

Y [109 N/m2] 0.01 100 Young’s Modulus
ν – 0.2 0.5 Poisson’s ratio
R [m] 0.001 0.1 Particle radius
ρm [kg/m3] 250 3250 Material density
A [s] 10−6 1 Dissipative parameter
v [m/s] 0.001 25 Impact velocity
d/l – 0.01 0.99 Eccentricity

[ln cϕ, ln l̃] (similar to Fig. 3), in the new variables, the domain
is bounded by a rectangle, which is much better suited for the
construction of a lookup table for the matrix of restitution.

In contrast to the linear dashpot model discussed in
Sec. V A, for viscoelastic spheres the dissipative parameter
cdis = 3A

2T
depends on l̃ and cϕ via T . From the definitions of

cϕ , l̃, X, T , �L and geometry, we obtain

T = lX

dv

cϕ

l̃
= l

v

l

d

cϕ

l̃2
. (58)

Using Eq. (45) to replace l/d = 1/e and the definition of cdis

[below Eq. (54)] this yields

ln cdis = ln

(
3

2
A

v

l

)
+ ln l̃ − 1

2
ln

[
1 +

(
cϕ

l̃

)2]
. (59)

That is, for a given c ≡ ln( 3
2Av

l
), ln cdis(l̃,cϕ) forms a curved

surface in the {l̃,cϕ,cdis} space, where c ranges from cmin ≈
−18.71 to cmax ≈ 9.84 for the physical parameters given in
Table II. With this, we define

ln cmin
dis = cmin + ln l̃ − 1

2
ln

[
1 +

(
cϕ

l̃

)2]
. (60)

Using ln cdis/c
min
dis instead of ln cdis, the physical parameters

given in Table II are mapped to a cuboid-shaped domain in
the ln cϕ/cmin

ϕ -ln l̃/l̃min-ln cdis/c
min
dis space, allowing for efficient

lookup tables.
Figure 5 displays the result for a selection of dissipative

parameters ln cdis/c
min
dis . Similar to Fig. 4 each row of Fig. 5

shows the four components of the collision mapping Eq. (23)
for a fixed dissipative parameter ln cdis/c

min
dis . Again, dissipation

increases from the top to the bottom row. The discussion
of Fig. 5 is absolutely equivalent to the linear-dashpot case
(Fig. 4).

The corresponding transformation back to l̃, cϕ , and cdis

may be obtained directly from the definitions and reads

ln l̃ = ln
l̃

l̃min
+ mmin + 2

5
ln

[
1 + e

2(ln
cϕ

cmin
ϕ

+gmin)
]
,

ln cϕ = cϕ

cmin
ϕ

+ ln l̃ + gmin, (61)

ln cdis = ln
cdis

cmin
dis

+ cmin + ln l̃ − 1

2
ln

[
1 + e

2(ln
cϕ

cmin
ϕ

+gmin)
]
.

VI. EVENT-DRIVEN MOLECULAR DYNAMICS
ALGORITHM

A. Traditional event-driven Molecular Dynamics

The traditional eMD scheme of hard particles is rather
simple, although an efficient implementation allowing for the
simulation of many millions of particles may be technically
rather complex; see, e.g., Ref. [15]. Its basic concept is to

(1) Find the next colliding pair (i,j ) of particles in the
system and their collision time t∗

(2) Propagate all particles k to this time,

�rk := �rk + �vk(t∗ − t), (62)

where t is the present time and �vk is the present velocity of
particle k.

(3) Compute the postcollisional velocities of particles i and
j due to the collision rule

�vi := �vi + 1 + εn

2
[(�vi − �vj ) · �er ]�er ,

(63)

�vj := �vj − 1 + εn

2
[(�vi − �vj ) · �er ]�er ,

where εn is the coefficient of normal restitution. For simplicity
of the notation we consider here particles of identical mass,
the generalization is straightforward.

(4) Continue with step 1.
While all eMD schemes work in principle as described,

there are many ways to increase the efficiency (e.g., Refs. [12,
14,15,40]) which shall not be discussed here. Moreover, the
scheme described above does not take into account external
fields like gravity, interaction with (moving) boundaries, etc.

Figure 6 (top) shows the trajectories of two colliding
particles as obtained by eMD in comparison to force-based
MD, that is, the numerical solution of Newton’s equation of
motion. For the interaction force we assume a linear-dashpot
model [Eq. (40)] with the parameters k = 2 kN/m, R = 0.1 m,
ρ = 1140 kg/m3, v = 5 m/s, e = 0.3 (see Fig. 2). Initial
velocities are �v1 = (v/4, v/2,0) and �v2 = (v/4, − v/2,0).
Since here we assume elastic interaction (γ = 0), the cor-
responding coefficient of normal restitution is εn = 1.

The figure reveals two fundamental problems which are
both attributed to the assumption of instantaneous collisions:
First, the finite duration, τ , of collisions in the physical system
leads to a finite rotation of the inter-particle unit vector.
Consequently, the directions of the final velocities differ for
MD (based on forces) and eMD (based on the coefficient of
restitution). As indicated in the figure, the deviation may be
large. Only for the case of a central collision do the directions
of the final velocities agree for MD and eMD.

Second, the position of the particles as a function of time
may be different for MD and eMD. This applies to both central
and off-central collisions. In Fig. 6 we indicate the dynamical
properties by plotting dots (of the respective color) on top of
the trajectories (lines) at equidistant intervals of time.

We wish to mention that the chosen parameters for the
plot in Fig. 6 correspond to very soft particles in order to
visualize the differences between MD and eMD. A careful
analysis [20,21] shows that the differences may be large
also for more realistic material and system properties. The
fundamental problems detailed above are always present when
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FIG. 5. (Color online) Components of the collision mapping [Eq. (23)] for the viscoelastic interaction [Eq. (51)]. Abscissa of all panels:
ln cϕ/c

min
ϕ . Ordinate of all panels: ln l̃/l̃min. Each row displays εϕ , εṙ , εr , and εt for the dissipative parameter ln cdis/c

min
dis indicated by the white

label in the corresponding image for εϕ . Parameters as indicated in Table II.

collisions of physical particles are modeled by eMD assuming
instantaneous collisions.

B. Improved event-driven Molecular Dynamics

1. Classification of events

The propagation rule [Eq. (63)] is used in traditional eMD
and relies on the coefficient of restitution, εn, and instantaneous
collisions. It shall now be replaced by the propagation rule (24)
using the matrix of restitution, ε̃, which takes the finite duration
of collisions into account. We propose an improved eMD

algorithm which does not suffer from the problems described
above, caused by the assumption of instantaneous collisions.

In the improved eMD scheme (eMD∗), each collision is
represented by three instantaneous events. These events may
be of type Eϕ or Ev: Assume two particles (i,j ) collide at time
t∗. This collision is represented by

(a) An event of type Eϕ at time t∗ where the positions of
the particles are set due to the rotation of the interparticle unit
vector; the velocities are set to the center-of-mass velocity of
the colliders

(b) An event of type Ev at time t∗ + τ where particle i

adopts its postcollisional velocity and
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FIG. 6. (Color online) Traces of two colliding spheres
(parameters are given in the text). Black lines show the numerical
integration of Newton’s equation (MD), red (gray) lines (top) show
the trajectories as obtained from eMD with the assumption of
instantaneous collisions. The green (gray) lines (bottom) show the
trajectories as obtained by the new eMD algorithm (see Sec. VI B).
Symbols and numbers (of the respective color) indicate the particle
positions at equidistant points in time. The number 0 stands for the
moment when the particles touch and 7 corresponds to the end of the
collision (step size dt = τ/7). The dashed circles show the spheres
at the moment of impact.

(c) An event of type Ev at time t∗ + τ where particle j

adopts its postcollisional velocity.

2. Events of type Eϕ

An event of type Eϕ occurs at the moment t∗ when a pair of
particles (i,j ) gets in contact, similar to the events in traditional
eMD. The following subtasks are performed:

(1) Compute the scaled parameters (ln l̃, ln cϕ, ln cdis) from
the physical material parameters, the particle radii, the impact
geometry, and the velocities of the particles.

(2) Compute the components {εϕ,εt ,εr ,εṙ} of the matrix of
restitution [Eq. (23)]. This may be done in a convenient and

efficient way using lookup tables based on the transformations
described in Sec. V.

(3) Apply the collision rule detailed in Sec. IV with εt = 0
to rotate the particles around their center of mass by the angle
ϕ = εϕΦ and to obtain the postcollisional velocities, �v ′

i and
�v ′
j .
(4) Set the velocities of both particles to the center of mass

velocity �vi = �vj = �̇R0.
(5) Store the computed postcollisional velocity �v ′

i in a local
variable of particle i and, respectively, �v ′

j in a local variable of
particle j .

(6) Mark both particles as collision not yet accomplished by
setting a local flag.

(7) Schedule two more events of type Ev in the global event
list, both occurring at time t∗ + τ ; (τ = εtT ):

(a) The velocity of particle i will be updated.
(b) The velocity of particle j will be updated.

3. Events of type Ev

If a particle suffers an event of type Eϕ at time t∗, it suffers
an event of type Ev at time t∗ + τ , where τ is the duration
of the collision which was computed when the event of type
Eϕ was handled. Different from events of type Eϕ describing
two-particle interactions, events of type Ev concern only one
particle. The following subtasks are performed when an event
of type Ev occurs:

(1) Check whether the flag collision accomplished is set
in the concerned particle i. If this is the case, do nothing.
Otherwise continue with item 2.

(2) Set the velocity of the concerned particle i to the value
which was previously computed and stored in a local variable
of particle i; see item 5 in Sec. VI B2.

(3) Set the flag collision accomplished in particle i.

4. Schedule of events

The eMD∗ algorithm is similar to the eMD algorithm in
the sense that the computation proceeds from one event to
the next. The particle velocities are changed only due to
these instantaneous events (except for the trivial acceleration
resulting from homogeneous and constant external fields
which does not influence the collision sequence). In eMD∗
the events of type Eϕ correspond to the events in eMD.

Again, we discuss only the principle of the algorithm, not
the technicalities of its implementation. We assume there is a
global list which contains the sequence of scheduled events of
type Ev . Initially, the list is empty.

The eMD∗ algorithm then works as follows:
(1) Find the next colliding pair (i,j ) of particles in the

system and their collision time t∗ (begin of the collision).
(2) If t∗ is smaller than the first (next in time) entry in the

collision list, propagate all particles k to this time,

�rk := �rk + �vk(t∗ − t), (64)

handle the collision as an event of type Eϕ and proceed with
step 1.

(3) Propagate all particles k to the time t† of the next
scheduled event of type Ev ,

�rk := �rk + �vk(t† − t), (65)
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handle this event, and remove the entry from the list. If there
is more than one event scheduled for the same time, chose any
of them. Proceed with step 1.

An exemplary application of the algorithm is shown in
Fig. 6 (bottom). The black lines again denote the trajectories
due to Newton’s equation (same as upper panel). The green
lines display the trajectories as obtained by the eMD∗ algo-
rithm. At time 0 when the particles get in contact, an event
of type Eϕ is performed. This event rotates the intercenter
unit vector around their center of mass and, thus, relocates the
particles instantaneously to new positions (time 0 is shown
twice). From there on, the particles move at the velocity of the
center of mass. At time 7 two events of type Ev occur where
both particles adopt their final postcollisional velocities. From
this time on the trajectories due to eMD∗ and MD (Newton’s
equations) agree perfectly. In contrast, as indicated by the
upper panel of Fig. 6 the results of eMD (red lines) and MD
differ significantly.

5. Exceptions

For the description of the algorithm, we silently assumed
that the operations due to events of types Eϕ and Ev are
permitted. This is, however, not always the case but we have
to deal with two possible exceptions:

(1) The rotation step (event of type Eϕ , item 3 of Sec. VI B2)
may not be executed as it would lead to overlap with other
particles.

(2) In the time interval between an event of type Eϕ and
the associated events of type Ev the colliding particles (i,j )
move at the center of mass velocity, which is an unphysical
but very short-lived transient state. In this time interval, one
of the particles (i,j ) (or both) may collide with another
particle k.

Case (1): We are of the opinion that event-driven MD is
restricted to the domain of dilute systems. To apply eMD,
we have to ensure that in the corresponding physical (force-
based) system, the frequency of three-particle interactions is
negligible as compared with the frequency of two-particle
interactions (see Ref. [10] for a detailed discussion of this
problem). For realistic and relevant material and system
parameters, the rotation angle of the intercenter unit vector,
ϕ, is rather small. Consequently, only minimal extra space is
needed to perform this rotation. The probability that this small
rotation would lead to overlap with other particles is, hence,
small as well.

In case that such an exception occurs, we fall back to the
traditional eMD scheme for this particular collision: Only the
velocities of the particles are changed according to the collision
rule (63) using the coefficient of restitution εn = −εṙ but not
the full matrix of restitution.

Case (2): Assume the collision (i,j ) at time t = 0 requires
for both particles i and j an event of type Ev at time τ . Assume
further that another particle k collides with i at time tk < τ .
In this case we exceptionally perform the event of type Ev of
particle i at time t k , just before the event of type Eϕ of the pair
(i,k).

That is, only the instant in time when the events of type
Ev are executed is modified. The postcollisional velocities are
not affected by the exception handling, and, hence, neither

conservation of momentum nor conservation of energy are
violated by this type of exception. But, as a consequence
of the exception, the events of type Ev , both scheduled at
time τ originally, are no longer executed simultaneously
due to the interference of a third particle. This, in turn,
violates conservation of angular momentum by a tiny amount.
However, it may be shown that any application of periodic
boundary conditions leads to much stronger violations of
angular momentum.

The tiny violation of the conservation of angular momentum
may actually be avoided: The events Ev of both particles
i and j , originally scheduled at time τ are executed at
the earlier time t k when either particle i or j interferes
with a third particle k. However, this requires postcollisional
communication between the particles i and j being an
algorithmic complication which may cause significant loss
of computational performance. Depending on case specific
demands, one has to decide between absolute accuracy
and maximal algorithmic efficiency. But anyway, for dilute
systems, being the scope of the eMD∗ algorithm, eMD∗
including postcollisional communication is still by orders of
magnitude more efficient than force-based MD.

Furthermore, the exceptions of type b implicate the question
of how to deal with collisions being interfered by more than
a third particle. For a gas considered here, the mean free
time is much larger than the time lag between the events of
type Eϕ and Ev , corresponding to the duration of a collision.
Therefore, if the frequency of an exception is small (∼0.1%;
see Sec. VI B6), the probability of a four-particle interaction
is even much smaller (∼10−6). Hence, these cases may safely
be neglected.

6. Confidence regions of the eMD∗ algorithm

The aim of the eMD∗ algorithm is to simulate soft spheres
while maintaining the advantages of event-driven modeling,
which, in its traditional form, relies on hard-sphere interaction.
Of course, this goal may only be achieved if the unavoidable
exceptions detailed in Sec. VI B5 are rare and hence negligible
events. In this section we, therefore, assess the range of
validity of the eMD∗ algorithm by providing statistics on the
exception frequency. To this, we simulate a granular gas of
N = 10 000 elastic particles [interaction-force (51), A = 0 s,
ρm = 1140 kg/m3, R = 0.1 m, ν = 0.4)]. As simulation setup
we choose a periodic box of volume Vsim, in which the particles
are initially located on a crystal lattice, from which they are
then released to move freely with random velocities distributed
in a way that the resulting thermal velocity is about 2 m/s.

Obviously, the frequency of both exceptions (type (1),
rotation step impossible, and (2), three-particle contact; see
enumeration in Sec. VI B5) is mainly governed by the packing
fraction

η ≡ N4R3π

3Vsim
(66)

and the Young’s modulus of the particle material, which,
in turn, influences on the contact duration and the rotation
angle ϕ = εϕ�, respectively. During the simulation we record
the number of exceptions of type (1) and (2) for various
packing fractions and Young’s modulus ranging from very soft
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FIG. 7. (Color online) Exception frequency fe in 1/1000 for a
free granular gas of elastic particles as a function of (1) the packing
fraction η at Y = 1GPa (upper panel) and (2) the Young’s modulus
of the particles Y at η = 0.001 (lower panel). See text for details on
the setup and the parameters.

materials like, e.g., rubber to hard materials like, e.g., glass.
The result is shown in Fig. 7. First, we see that in the limit
of very hard spheres or very dilute systems the probability of
both exception types vanish. Second, for system parameters
typically used in the literature on granular gases and for
common materials, exceptions of both types are rare events
(about 0.1%).

Clearly, the percentage of collisions where the eMD∗
algorithm fails (and we fall back to the traditional collision
rule) is small. The eMD∗ algorithm, hence, indeed improves
the trajectory accuracy for typical systems.

VII. SUMMARY

The basic concept of event-driven Molecular Dynamics is
the assumption of perfectly hard spheres leading to instanta-
neous collisions, such that the particle positions do not change
during the collision. This assumption allows one to describe
the dynamics of a granular system as a series of independent
binary collisions. Each of these collisions is modeled by a
simple multiplication of the precollisional relative velocity in
normal direction with the coefficient of restitution to obtain the
postcollisional value and finally the postcollisional vectorial

velocities. The only parameter characterizing the collision is
the coefficient of restitution, containing all the physics of the
particle interaction. For central collisions, it can be derived
by integrating Newton’s equation of motion for an isolated
pair of colliding particles (which may lead to a velocity
dependent coefficient of restitution); see, e.g., Refs. [16–19].
The coefficient of restitution is then found from its definition
(3). Hence, for central collisions, an event-driven description
yields the correct postcollisional velocities if compared to the
integration of Newton’s equation of motion. However, even
for central collisions, the temporal properties are not correctly
reproduced since the finite duration of collisions is neglected
within event-driven modeling.

Clearly, the assumption of instantaneous collisions is an
approximation: Physically, the trajectories are determined
by Newton’s equation of motion with appropriate forces
and material parameters. Any instantaneous change of the
velocities would correspond to diverging repulsive forces
between the particles. Furthermore, the request for a loss
of energy of colliding particles (expressed by the coefficient
of restitution) is not consistent with the assumption of
instantaneous collisions since otherwise a finite amount of
energy must be dissipated in vanishing time. That is, the
hard-sphere model may be inappropriate for the description
of dissipative systems.

The finite duration of physical collisions leads always to
a finite rotation of the inter-particle unit vector �er . Only
for central collisions �er remains unchanged. For the case of
adhesive nanoparticles [41] it was recently shown that at very
large impact rate the rotation of �er may be large. This rotation,
in turn, causes a large deviation between the trajectories as
obtained in eMD [applying the collision rule (63)] and MD
(integrating Newton’s equation). This result was generalized
to oblique collisions of particles interacting via any force
law [20,21].

Consequently, due to the hard-sphere assumption, eMD
agrees with MD neither regarding the spatial nor the temporal
properties of the trajectories. The deviations may be large
[20,21].

In the present paper we propose an alternative event-driven
algorithm, eMD∗. The essence of the eMD∗ algorithm is an
extended collision rule. In contrast to the one of classical
eMD, it changes not only the particle velocities but also
their positions. Pre- and postcollisional states of the system
differ in more than just the normal component of the relative
velocity. We arrange all changing quantities in a vector which
completely describes the system state. Compared to classical
eMD, where pre- and postcollisional normal component of the
relative velocity are related by the coefficient of restitution,
pre- and postcollisional state vectors are, consequently, related
by a matrix within eMD∗. We termed this matrix matrix of
restitution. Together with the concept of the state vectors, it
allows one to maintain the mathematical form of the hard-
sphere collision rule applied within classical eMD. Similar to
the coefficient of restitution in eMD, all physical properties
of the collision are mapped to the matrix of restitution. The
eMD∗ algorithm does not assume instantaneous collisions. If
applicable, the postcollisional particle positions and velocities
obtained by eMD∗ agree with those obtained by integrating
Newton’s equations. Algorithmically, in eMD∗ each collision
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is represented by three events of two different types which
together map the precollisional state to the postcollisional
one.

The centerpiece of the method is the setup of the matrix
of restitution as a functional of the particle interaction force
law. We apply the eMD∗ algorithm to two examples which
are important for practical applications, the linear-dashpot
force and the viscoelastic Hertz force. Both force laws are
characterized by two material properties. The geometry of
the particles and the vectorial precollisional velocities are
further parameters describing the impact. For both examples
we demonstrate that the collision can be fully described by
a set of three parameters which allows us to represent the
elements of the matrix of restitution in the form of universal
lookup tables. Using these tables the eMD∗ algorithm turns
into a very efficient simulation method.

We applied the eMD∗ algorithm to the oblique collision
of two spheres and obtain identical postcollisional velocities
as compared with Newton’s equations. The trajectories are
identical as well, except for a short-lived transient state whose
duration is of the order of the duration of the collision. This
means, that for dilute systems, where the exceptions detailed
in Sec. VI B5 are rare, negligible events, eMD∗ simulations
are equivalent with MD simulations. In fact, as shown in
Sec. VI B6, the frequency of (algorithmic) failure may be
reduced to any desired number by reducing the system density,
while the physical effects of finite interaction forces are
preserved. That is, both methods simulate granular systems
composed of soft spheres and yield the same trajectories

as functions of time. At the same time, as an event-driven
algorithm, eMD∗ is much more efficient than force-based
MD. So far, we considered only frictionless interactions.
This, however, is not a principal restriction, and extending
our findings to rough, frictional spheres is subject of future
investigation.

Besides standard eMD, the Kinetic Theory of granular
gases is also based on the hard-sphere model since the
Boltzmann equation is applicable only for hard spheres. This
raises the question how the deviations between the trajectories
obtained by means of the coefficient of restitution and from
Newton’s equation affect the results of Kinetic Theory like,
e.g., transport coefficients, which is a subject of current
research. For granular gases it is known that the vectorial
particle velocities are correlated due to the dissipative nature
of the interactions, which necessarily implies a violation of
molecular chaos [42–45]. It may hence be expected that the
improved trajectory accuracy achieved by the eMD∗ algorithm
is not screened by molecular chaos and leaves its fingerprints
also in measurable macroscopic quantities like, e.g., the
coefficient of (self-)diffusion.
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