
SOFTWARENEWSANDUPDATES
DOI 10.1002/jcc.21915

DynamO: A FreeO(N) General Event-Driven Molecular
Dynamics Simulator
M. N. Bannerman,∗[a,b] R. Sargant,[b] and L. Lue[c,d]

Molecular dynamics algorithms for systems of particles inter-
acting through discrete or “hard” potentials are fundamentally
different to the methods for continuous or “soft” potential sys-
tems. Although many software packages have been developed
for continuous potential systems, software for discrete potential
systems based on event-driven algorithms are relatively scarce
and specialized. We present DynamO, a general event-driven sim-
ulation package, which displays the optimal O(N) asymptotic
scaling of the computational cost with the number of particles
N, rather than the O(N logN) scaling found in most standard

algorithms. DynamO provides reference implementations of the
best available event-driven algorithms. These techniques allow
the rapid simulation of both complex and large (>106 particles)
systems for long times.The performance of the program is bench-
marked for elastic hard sphere systems, homogeneous cooling
and sheared inelastic hard spheres, and equilibrium Lennard–
Jones fluids. This software and its documentation are distributed
under the GNU General Public license and can be freely down-
loaded from http://marcusbannerman.co.uk/dynamo. © 2011 Wiley

Periodicals, Inc. J Comput Chem 32: 3329–3338, 2011

Keywords: molecular dynamics • event-driven simulation • discontinuous potentials • hard spheres • square-well potential

Introduction

Molecular dynamics (MD) simulations have become an indispens-

able tool in the development of novel nanomaterials,[1] drug

discovery,[2–4] and materials engineering in the estimation of ther-

mophysical properties and phase behavior of complex solutions.

MD not only allows the exploration of the link between interparti-

cle interactions and macroscopic structure and dynamics but also

is capable of providing quantitative predictions for real materials.

MD simulations have been dominated by time-stepping methods

for systems that interact with continuous potentials. This method

was first used by Rahman[5] in 1964 and later popularized by

Verlet.[6] Since then, many sophisticated software packages have

been developed, such as large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS),[7] Groningen Machine for Chemical

Simulation (GROMACS),[8, 9] NAMD,[10] Desmond,[11] and Extensi-

ble Simulation Package for Research on Soft Matter (ESPResSo),[12]

which are freely available and allow the simulation of complex

systems. In addition, a wealth of force fields based on continu-

ous potentials have been developed to describe real materials,

such as small organic and inorganic molecules, polypeptides, pro-

teins, and DNA (e.g., see AMBER[13, 14] or CHARMM[15]). MD has

also been applied to granular systems, which was pioneered

by Cundall and Strack.[16] Since then, Hertz’s law for elastic

particles has been generalized for viscoelastic spheres,[17] and

a range of approximations for the tangential forces are now

available.[18–20]

An alternative approach to modeling many-body systems is

through the use of discrete interaction potentials, such as the

hard-sphere or square-well potentials. These potentials contain

only distinct energy level changes; however, they can be stepped

to either approximate soft potentials, such as the Lennard–Jones

potential,[21] or directly reproduce thermodynamic data.[22]

The “true” interactions between real molecules or atoms (or
larger scale particles) are expected to be smooth and continuous,
and so one may question the relevance of discrete potentials; they
are an extreme approximation to the “true” interactions. However,
in reality, all interaction potentials that are used in computer sim-
ulations are necessarily approximate, due to practical limitations
in computing resources. In the case of continuous potentials, the
main approximation is typically the assumption of pair-wise addi-
tivity, neglecting many-body interactions, which are present in all
“real”systems,or the use of restricted functional forms for the inter-
action potential (e.g., Lennard–Jones, Stockmayer, etc.). So most
commonly used continuous potentials also only approximate the
“true” interactions.

The main issue is, however, not whether a potential exactly
reproduces the “true” interactions between real particles, but
whether it captures the essential features of the interaction to
be able to reproduce the physics/chemistry which is of interest in
a particular study.This is the primary motivation of coarse grained
simulations, and many coarse-grained potentials have also been

[a] M.N.Bannerman

Institute for Multiscale Simulation,Universität Erlangen-Nürnberg, Erlangen,

Germany

E-mail:marcus.bannerman@cbi.uni-erlangen.de

[b] M.N.Bannerman,R. Sargant

School of Chemical Engineering and Analytical Science,The University of

Manchester,Oxford Road,Manchester M13 9PL,United Kingdom

[c,d] L. Lue

Department of Chemical and Process Engineering,University of Strathclyde,

JamesWeir Building, 75Montrose Street,GlasgowG1 1XJ,United Kingdom

Contract/grant sponsor: EPSRCDIA

Journal of Computational Chemistry © 2011 Wiley Periodicals, Inc. 3329



M.N.Bannerman,R. Sargant, and L. Lue

developed to describe systems on larger scales, such as the M3B
model for carbohydrates[23] and the MARTINI force field,which was
originally developed for lipids[24] and later extended to proteins.[25]

It is within this context that discrete potentials are extremely
useful.

Although simulations for discrete potential systems are not
as prevalent as for continuous potential systems, the literature
for classical systems of particles with discontinuous potentials
is quite extensive. Indeed, Alder et al.[26] reported MD sim-
ulations for systems of hard spheres using an event-driven
algorithm in 1957, 7 years before Rahman’s soft potential sim-
ulations. Since then, many discrete potential force fields have
been developed for a wide range of systems, including granular
materials,[27] simple molecular systems (e.g., SPEADMD[28]) such
as mixtures of hydrocarbons,[28] ethers,[28] alcohols,[29] amines,[29]

and carboxylic acids,[30] block copolymer micelles[31] and orga-
nized mesophases,[32] and detailed models (e.g., PRIME[33]) for
polypeptide[34, 35] and protein[36] solutions.These models not only
offer qualitative insight to these systems but also provide quan-
titative predictions for such properties as vapor–liquid phase
equilibrium.[28] In addition, the models are detailed enough to
realistically capture protein structure, but sufficiently efficient to
examine folding and aggregation.[33, 36]

In coarse-grained simulations, discrete potentials possess an
advantage over continuous potentials in their greater simplicity.
The methods used to simulate discrete potential systems offer
great computational advantages at low to moderate densities and
allow computational resources to be focused on the regions in
space and time where relevant dynamics occurs. Consequently,
much larger length and time scales can be explored for discon-
tinuous coarse-grained potentials than equivalent coarse-grained
models based on continuous potentials. A comparison of relative
advantages of discrete and continuous potential models, within
the context of fibril formation in polypeptides, is provided in
Ref. [34].

Standard numerical methods developed for integrating systems
interacting through soft potentials are inefficient for systems with
discrete potentials, due to discontinuities in the potential. A time-
stepping algorithm, where changes in the interaction energies
are detected after the time step is taken, is still feasible[37]; how-
ever, this method is necessarily approximate, and high accuracy
requires a small, computationally expensive time-step. Event-
driven algorithms avoid these difficulties by detecting the time
of the next interaction a priori. The system is then analytically
integrated to the time of the next interaction (event) in a sin-
gle step. In principle, event-driven algorithms provide an exact
method for performing MD simulations for discrete potential sys-
tems, where the dynamics can be decomposed into a sequence
of events. Event-driven MD is extremely efficient for simulating
systems of particles interacting through steep potentials with a
relatively small number of steps.

There are numerous reviews on algorithms for event-driven
molecular dynamics[37–43]; however, it is difficult to find docu-
mented implementations of algorithms, which include the source
code. Modern algorithms are complex and contain many subtle
difficulties which, if poorly implemented, can severely restrict
the generality and speed of the code. In this article, we present

Dynamics of discrete Objects (DynamO),a free source MD package
that is optimized for event-driven dynamics. DynamO is capa-
ble of simulating large (�106 particles) and complex systems for
extremely long simulation times.[44] This package has already been
used to study sheared/damping granular materials,[45, 46] square
well molecules,[47] binary mixtures,[48] parallel cubes,[49] and helix
forming polymers.[50]

The remainder of this article is organized as follows. In Algo-
rithm Details, we begin with an overview of the basic elements of
event-driven MD simulations. This section briefly reviews some
of the recent algorithmic advances. Some improvements that
we have developed to the simulation algorithm are presented
in the Improvements to the Simulation Method section. These
include novel approaches to access particle information, optimize
neighbor lists, and minimize numerical inaccuracies. The Bench-
marking section provides benchmark simulations for DynamO on
systems of single component hard spheres and stepped Lennard–
Jones molecules. These simulations provide timing results and
information on the scaling of the calculation times with sys-
tem size. Finally, the conclusions of the article are presented,
along with a discussion of possible directions for future exten-
sions to DynamO. An outline of the general structure of DynamO
and details of various aspects of its implementation, as well as
a listing of its currently implemented features, are provided in
the Appendix .

Algorithm Details

A MD simulation calculates the trajectory of a collection of a large
number of interacting particles. When the particles interact with
each other through a discrete potential, the dynamics of the sys-
tem are governed by a series of distinct events (e.g., collisions
between particles). These events may alter the properties of the
particles, such as their velocities. Between these events, the parti-
cles move on a ballistic trajectory, and the dynamics of the system
is known analytically. This is a significant advantage of event-
driven algorithms, as the ballistic motion requires no numerical
integration and does not suffer from truncation error.

In an event-driven simulation, there are three major tasks,which
occupy most of the computational time: (i) searching for events
(event detection), (ii) maintenance of the event list, and (iii) exe-
cution of events. An outline of a basic event-driven simulation
algorithm is given below, including the scaling of the computa-
tional cost of each step with the number of particles N in the
system:

1. Event testing O(N2):All particles and pairs of particles are tested
to determine if/when the next interaction occurs. The times of
these events are inserted into the future event list (FEL).

2. Event sorting O(N): The events in the FEL are sorted to
determine the next event to occur.

3. Motion of the system O(N): The system is evolved, or free
streamed, to the time of the next event.

3330 http://wileyonlinelibrary.com/jcc Journal of Computational Chemistry



DynamO:Molecular Dynamics Simulator

4. Execution of the event O(1): Particles involved in the event are
updated with new velocities.

5. Update events in FEL O(N): Events in the FEL that involve parti-
cles that have just undergone the executed event are now invalid.
New events for these particles are possible and must be tested for.
The future event list may be cleared and rebuilt (O(N2)), or only
the affected events can be updated (O(N)).

6. End condition: Continue to step 2 unless sufficient collisions
have been executed or the maximum simulation time has elapsed.

Alder and Wainwright[26] proposed the first algorithm for event-
driven MD simulations. Since their pioneering work, there have
been significant advances in the development of this initial
algorithm. We will briefly cover the advances in event detec-
tion/execution before detailing improvements in the maintenance
of the list of all possible future events.

Alder and Wainwright[38] were the first to suggest the use of a
“neighbor list” technique to improve the efficiency of the search
for future events. In this method, the simulation box is divided into
small cells. An additional event type is also introduced to track
the motion of the particles between these cells. These cells are
used to determine which particles are close to a particle under-
going an event. This significantly reduces the number of particles
that need to be tested for new interactions in step 1 to O(N) and
in step 5 to O(1). This “neighbor list” technique has since been
extended to infinite systems[51] using a hashing technique, over-
lapping cells[52] to reduce the frequency of cell transitions, and
hybrid methods[53] combining multiple neighbor lists. All of these
methods are available in DynamO.

One of the most significant advances in event-driven simulation
came with the development of asynchronous[40, 54] or “delayed
states”[41] algorithms. In these algorithms, only particles involved
in an event or within the neighborhood of an event are updated
when an event occurs (step ).Each particle stores the time at which
it was last updated and is only evolved to the current time when
it is tested for, or undergoes an event. As particles that are not
involved in an event and in step 5 to O(1).

In most modern implementations of event-driven algorithms,
the system size scaling of the event computational cost arises
from the maintenance[39] of a list of all possible future events
(step 2). This list needs to be sorted to determine the next event
to occur, and after an event is executed the list must be updated.
Improvements in sorting began with the use of many variants
of binary trees[39] before complete binary trees were found to be
optimal.[55] Complete binary trees exhibit an O(log2 Nevent) scaling
in the number of events Nevent contained in the tree. It has been
previously suggested[39, 40] that an O(log2 Nevent) scaling of sort-
ing the event list is the asymptotic minimum; however, a recent
advance in event sorting using calendar event queues[56] now
enables O(1) scaling. This is achieved by first presorting events
into fixed intervals of time or “dates” within a “calender.” The date
to which an event corresponds can be determined by simply divid-
ing the event time by the duration of a date and truncating to an
integer (O(1)). As the simulation progresses to a new date in the
calendar, the events within a date are sorted and processed using

a complete binary tree.The length and duration of the calendar is
scaled with the system size, resulting in a fixed average size of this
complete binary tree.This ensures that the deletion, insertion, and
updating operations on the FEL all remain of order O(1).

With these methods, the overall computational cost of execut-
ing a single event is now independent of the system size, which
is the theoretical optimum. The number of events per particle is
typically proportional to the total time simulated, thus the compu-
tational cost of simulating a unit of time scales as O(N) with the
system size.

Other algorithmic improvements, which do not affect the sys-
tem size scaling of the computational cost, have been made
to the deletion of events from the calendar. The local minima
algorithm[41] relies on each event being associated with at least
one particle. A priority queue called a particle event list (PEL) is
used to sort the events associated with a single particle.The PEL is
then inserted into the global event list and sorted according to its
earliest event. When a particle undergoes an event, at least half of
the invalidated events associated with it can be deleted by simply
erasing the corresponding PEL. The remainder of the invalidated
events are left in the FEL and are deleted if they reach the top of
the FEL. This is achieved by tracking the number of events each
particle has undergone in total and the value of this when the
event was tested.[41]

Improvements to the Simulation Method

In this section, we present some additional improvements to
the event-driven simulation algorithm that we have developed
and implemented within DynamO. These methods are primar-
ily concerned with the storage of data and increasing simulation
accuracy.

Particle data

The main bottleneck in most scientific programs is the speed of
memory accesses,and event driven simulation is no exception. It is
typically cheaper to calculate values than to store them in memory.
In DynamO, this approach is applied to all static values or “prop-
erties.” Associated to each particle is a class, which contains only
a particle’s position, velocity, ID number, and the time, the particle
was last updated. All other properties, dependent on the system
studied (e.g., mass/inertia, orientation, species), are accessed using
the particle’s ID number when required.

A design feature of DynamO is the use of functions, as opposed
to look-up tables, to perform this look-up both when mapping a
property (such as mass) to a range of particles and when determin-
ing the values of a property. For example, in a single component
system, all particles have identical masses.To avoid storing redun-
dant information, a distribution representing a single value of the
mass is stored behind a function that maps it to all particles.These
functions behave like a standard STL-container and are used to
define molecular topology, species, mass, and how particles inter-
act (e.g., to create mixtures of particles). This approach conserves
memory, as an absolute minimal number of entries are required,

Journal of Computational Chemistry http://wileyonlinelibrary.com/jcc 3331



M.N.Bannerman,R. Sargant, and L. Lue

and is faster than a look-up table due to the reduced number of
memory accesses.

For dynamical properties of particles where this approach is
impossible (e.g., if two particles have captured each other in an
attractive well), DynamO makes use of unordered sets and maps.
These hashed containers still provide O(1) operations when using
a suitable hash function but conserve memory when compared
to using arrays.

Morton ordered neighbor lists

The algorithms discussed in Algorithm Details section result in a
theoretical system size scaling of O(1) in the cost of processing a
single event. In practice, the computational cost is affected by the
memory architecture of the computer that runs the simulation. If
the events are relatively inexpensive to test for, the bulk of the
simulation time will be spent on memory accesses to retrieve
particle, event, and neighbor list data.

A fundamental aspect of modern processors is the use of a
CPU cache, into which data are “fetched” before becoming avail-
able to the running process. A cache “miss” occurs when data to
be accessed are not already available in the cache. The cost of a
cache miss is typically quite severe, requiring several computa-
tional cycles to fetch the data from main memory and load it into
the CPU cache. Data are typically fetched in blocks of 64 bytes;
therefore, data localized in memory are typically fetched at the
same time. Thus, if the location of data in memory is strongly
correlated to the data access pattern, then the number of cache
misses can be reduced.

The particle and event data accesses are effectively random,
which renders any attempt to optimize the access patterns futile;
however, accesses to the neighbor list data are strongly correlated.
Whenever a particle’s local space is to be inspected for possible
events, the cells of the neighbor list, which surround the particle
are checked for event partners. In the standard implementation of
a neighbor list,[57] only the first element of each cell is correlated
this way as a singly linked list is used look-up all other contained
particles.Nevertheless,accesses to the first particle in the neighbor
list cell are strongly correlated in the spatial coordinates of the cell.
Thus, if the cell’s first particle data are arranged such that spatially
localized data are also localized in memory, the number of cache
misses will be reduced.

Arrays are typically stored linearly (row major in C++) in com-
puter memory, where each successive row of data in the lowest
spatial dimension is appended to the previous row (see Fig. 1a).
An alternative space filling curve which retains a high level
of spatial locality is the Morton-order or “Z-order” curve (see
Fig.1b).Recently, fast methods for dilating integers used in Morton
ordering[58] and methods for directly carrying out mathematical
operations on the dilated integers[59] have become available. The
overhead of calculating a three dimensional Morton number is
now less than the cost of a cache miss in many applications. In
DynamO, we have implemented Morton ordering in the neigh-
bor list, and a comparison between linear and Morton order
is presented in the timing results section (see Benchmarking
section).

Figure 1. A two dimensional 4 × 4 array stored in row major order and Morton
order in memory.

The algorithms described thus far are primarily concerned with
increasing the speed of the calculations; however, the numerical
accuracy of the simulation is crucial. The methods used to ensure
precision is maintained are detailed in the following section.

Min-max particle event lists

Priority queues are often used for the PEL as they allow insertion,
access to the shortest time event, and clearing; and are optimal
for the access patterns of the PEL.[60] However, there are several
drawbacks to using these containers, which result from their abil-
ity to have a dynamic size: Often only the first few events in the
PEL are relevant to the dynamics and yet all tested events are
stored in the priority queue. In addition, the methods for manip-
ulating dynamic memory (new and delete in C++) are slow and
result in an extra layer of indirection. One method proposed to
solve these drawbacks is to only store the earliest event in a parti-
cle’s event list. If this single stored event is invalidated, all possible
events of the particle must be recalculated and the new mini-
mum stored.[40] Unfortunately, general event-driven simulations
utilize many types of virtual events (e.g., neighbor list boundary
crossings), resulting in many recalculations. Modern event driven
potentials, such as those for asymmetric particles, can also be
expensive to recompute.

It would be preferable to allow the PEL to only store some
small, but greater than one, number of events.This would limit the
number of events in the PEL (to save memory) and yet still store
a sufficient number to minimize recalculations which occur when
the PEL is empty. This fixed-size PEL must provide constant-time
access to the earliest event (for the dynamics) and also provide
constant-time access to the last event in the list to mark it as a
full-recalculation event if an event is added to a filled PEL.This last
element may also be used as a early test mechanism to determine
if an event needs to be inserted into a filled PEL.

MinMax heaps[61] are a data structure which satisfies all of
these requirements. A comparison of MinMax heaps, single event
storage, and a standard template library (STL) priority_queue is
presented in Figure 2. Even for hard sphere systems, the Min-
Max PEL offers the speed advantage of a priority_queue with a
great saving in memory cost.A slight speed improvement from the
priority_queue is expected, as the MinMax PEL does not require
dynamic memory.The optimal size of a MinMax queue appears to
be three stored events. This optimum is dependent on how many
invalid or virtual events are expected to appear at the top of the

3332 http://wileyonlinelibrary.com/jcc Journal of Computational Chemistry



DynamO:Molecular Dynamics Simulator

Figure 2. The speedup and memory cost of using a MinMax PEL of various sizes relative to storing only a single event per particle.The dashed lines are the values
for using a STL priority_queue. The results are for a monodisperse system of N = 105 elastic hard spheres simulated on an Intel® Core™i5 750 with 8 MB L3 cache
and 8 GB of RAM.

PEL; however, a more conservative size of 4 or 5 may be selected
without too great an increase in the memory cost.All further simu-
lation results presented in this paper are performed with a MinMax
PEL size of 4.

Accuracy and time invariance

MD simulations require a high level of accuracy. This is espe-
cially true for “hard core systems,” where configurations with
overlapping hard cores resulting from numerical inaccuracies are
unphysical and impossible to resolve. Accuracy is particularly
important in inelastic, granular systems due to clustering of the
particles; small errors in the movement of particles, resulting in
overlaps, are increasingly probable.

Several improvements have been made to the algorithm used
in DynamO to maintain the numerical precision of the simula-
tion. The use of the “delayed states”[41] algorithm already reduces
the number of times a particle is free-streamed between events.
Also, when an event is scheduled to occur, events are retested to
determine the exact time at which it occurs.[60] This reduces the
likelihood of overlaps occurring due to inaccuracies in the free
streaming. Furthermore, the dynamics of the system is tracked
to ensure invalid events cannot occur (e.g., particles must be
approaching to be tested for a collision, square-well molecules
must have been captured to test for a release event). This implies
that the dynamics of the system must always be deterministic;
however, random events, such as those that occur in the Ander-
sen thermostat,[62] are possible by randomly assigning a time after
each random event and scheduling this fixed time in the event list.

Another inaccuracy arises from the storage of absolute times in
the simulation. Events occur at an absolute time te and, within the
asynchronous algorithms, the particle data are stored at a certain
absolute simulation time tp. As the absolute simulation time tsim

increases in magnitude, round-off error will accumulate in these
stored absolute times. To avoid this, only time differences �te/p,
recording the time relative to the current absolute simulation time
te/p = tsim+�te/p,must be stored.This does,however, introduce an
O(N) computational cost per event in maintaining these time dif-
ferences. This is alleviated by storing time differences relative to a
reference time difference �te/p = �tref +�t

(stored)
e/p . This reference

time difference �tref is updated at every event without incurring

significant cost.Periodically all time differences and reference time
differences must be synchronized to prevent round-off error, and
the interval at which this synchronization occurs is proportional to
the system size.This leads to a time invariant simulation algorithm
with a fixed upper bound on round-off error without affecting the
scaling of the computational cost.

Visualization

DynamO is capable of simulating millions of particles at close
to real time. With macroscopic simulations of granular systems,
the simulation speed approaches the timescale of the interesting
dynamics. To enable live visualization of these massive systems
and to allow interactive or “steered” simulations, a new visualizer
was written in OpenCL/GL. This library, known as Coil, is capable
of rendering up to a million spheres in real time with full diffu-
sive, specular and shadow lighting calculations, and HDR effects.
The result is publication-quality images (see Fig. 3) at interactive
frame-rates while only using a single core of the host CPU. This
visualization library is already finding application in a wide range
of simulators outside of DynamO.

Figure 3. A snapshot of 5 × 105 sheared inelastic hard spheres, generated live
from a simulation, displaying a characteristic clustering behavior of granular
systems. On a NVIDIA® Geforce GTX 260™, the image is updated at 15 frames
per second.

Journal of Computational Chemistry http://wileyonlinelibrary.com/jcc 3333



M.N.Bannerman,R. Sargant, and L. Lue

Summary

In this section, we have discussed some of the new methods
we have developed to improve the computational efficiency of
DynamO. The next section provides some benchmarking sim-
ulations for DynamO and tests the system size scaling of the
simulation code.

Benchmarking

In order to benchmark the speed of DynamO and test that the
optimal O(1) scaling is achieved, we perform MD simulations on
systems composed of hard spheres. This interaction is relatively
inexpensive and as such is useful in testing the performance of
the simulation framework.Each sphere has a diameter σ and is run
over a range of reduced number densities ρσ 3. The simulations
were performed on a desktop computer with an Intel®Core™i5
750 processor with 8 GB of RAM. The simulations utilized only a
single core of the processor and are averaged over 4 runs of 5×106

collisions.The optimal parameters for the bounded priority queue
are determined at the start of the simulation by instrumenting the
initial event distribution. N calendar dates are used with a width
equal to the mean time between events.

The average number of collisions per second is plotted in
Figure 4a as a function of system size and density. It is appar-
ent that the memory architecture plays a large role in the speed of
the simulation.[56] The rate of collision maintains a relatively con-
stant value when the program fits inside the CPU cache (≤8 MB
boundary,N�1.6×104),and for very large systems (N�105) where
the cache effects are proportionally small. Accounting for these
memory size effects, the algorithm appears to exhibit O(1) scal-
ing of the collision cost. Inside the cache, the simulation reaches
a maximum of roughly 2.3 × 105 events per second, compared to
a minimum of ∼7 × 104 events per second outside of the cache.
Beyond the 8-GB memory limit (N ≈ 1.6 × 107), disk swapping
begins to occur and the performance is substantially degraded.
The event processing rate is relatively insensitive to density. A
slight decrease in the event processing rate is expected at higher
densities as local neighbor lists contain more entries (neighbors).

A comparison between Morton ordering and the typical linear
ordering is presented in Figure 5. Even inside the 8-MB cache

Figure 4. The number of collision events processed per second using linear
neighbor lists N(linear)

coll as a function of (a) the number of particles N and (b) the
number density ρ. The lines indicating the cache memory boundary is approx-
imate as different densities incur slightly different memory requirements. The
results are for a monodisperse system of elastic hard spheres simulated on an
Intel®Core™i5 750 with 8-MB L3 cache and 8 GB of RAM.

Figure 5. The number of events processed per second using linear and Morton
ordered lists, N(linear)

coll and N
(Morton)

coll , respectively. The dashed lines and system
are described in Figure 4.

limit, the Morton ordering has a positive effect. This may be due
to localisation of memory accesses in the smaller L1 cache. For
more practical system sizes operating outside the cache, Morton
ordering offers a 10–28% increase in event processing speed.This
is remarkable as only a single unsigned integer per cell is actually
optimized using this technique, proving its utility even in event-
driven simulations. At higher densities, the Morton ordering has
a slightly reduced effect as the ratio of particle to neighbor list
memory accesses is increased. Overall, Morton ordering appears
to be an effective method of increasing the computational speed
by reducing the number of cache misses within a simulation.

The large effect of caching on the performance of the simulation
indicates at least half the time of simulations outside the cache
boundary are spent waiting on memory accesses. Cache simula-
tions have been performed using Callgrind,[63] and for a density
of ρσ 3 = 0.5, approximately half of the cache misses result from
accesses to the contents of the neighbor lists.The remaining cache
misses are associated with accesses to particle and event data.

The code is also benchmarked for some more complex systems.
The collision model is extended to inelastic hard spheres with elas-
ticity e. In cooling simulations, the system is bounded by standard
periodic boundary conditions, and the temperature is rescaled to
unity every 2 × 106 collisions. For sheared systems, Lees-Edwards
boundary conditions are used and rescaling is not required. Inelas-
tic particles (e < 1) tend to cluster (see Fig. 3) which increases the
cost of updating the event list after a collision (see Fig. 6a). How-
ever, at very low inelasticities, the event processing rate increases
as events become correlated to “rattling” particles, improving the
cache’s effectiveness and reducing the effect of Morton-ordered
neighbor-lists.This behavior is also apparent in the sheared inelas-
tic simulations (see Fig. 6b). Morton ordering is quite effective
in inelastic simulations, with a slight enhancement over elastic

Figure 6. The speedup factor versus density for (a) cooling and (b) sheared
inelastic systems with N = 105. The speedup factor is relative to the linear-
neighbor-list elastic system.

3334 http://wileyonlinelibrary.com/jcc Journal of Computational Chemistry



DynamO:Molecular Dynamics Simulator

simulations due to the increased spatial correlations in the sys-
tem. Morton ordering could not be tested in the sheared system
as it has not yet been ported to the sheared neighbor-list.

Figure 7. A stepped potential (solid line) that approximates the Lennard-Jones
potential (dashed line) (potential 6 of Ref. [21]).

Finally, in order to assess the relative performance of an event-
driven algorithm with a time-stepping algorithm, simulations
are performed for the stepped and continuous variants of the
Lennard–Jones potential[21] (see Fig. 7). This potential provides a
reasonable approximation to the Lennard–Jones fluid and demon-
strates the applicability of discrete potentials to simple fluids.
The continuous potential is simulated using GROMACS 4.5.4,[9] a
popular and highly optimized time-stepping molecular dynamics
package. This comparison is biased in favor of the time-stepping
algorithm due to the shape of the potential and the relative matu-
rity of the GROMACS code; however, it should be noted that,
unlike time-stepping MD, event-driven algorithms do not use a
numerical integration scheme and are accurate to the numerical
precision of the machine. Both simulations consist of N = 13500
Lennard–Jones atoms with mass m, run for a simulation length of
t = 50(mσ 2/ε)1/2, and using double precision calculations. The
GROMACS simulations used the velocity Verlet integrator, Verlet
lists, a reduced time step of �t = 0.005(mσ 2/ε)1/2, and a reduced
cutoff distance of 3σ .

A comparison of the calculated radial distribution functions and
the relative speed of the simulators are presented in Figure 8.
The radial distribution functions are in close agreement, with a

Figure 8. A comparison of (a) the radial distribution functiong(r) of a Lennard–
Jones fluid at a number density of ρσ 3 = 0.85 and a temperature of kBT/ε = 1.3
calculated using GROMACS (dotted line) and using DynamO (crosses) and (b)
the speed of the DynamO simulations relative to the GROMACS simulations at
kBT/ε = 1.3 over a range of densities.

slight underestimation in the DynamO results at a distance of
r/σ ≈ 1.1. At low densities, DynamO significantly outperforms
GROMACS as expected as event-driven dynamics is optimal in
collisional regimes. Surprisingly, DynamO also performs well into
the liquid phase, with GROMACS only displaying a 4× speedup.
This is a small cost when it is considered that the event-driven
algorithm solves its dynamics without truncation error.

Conclusions

We have detailed the fundamental components of DynamO,
a modern event-driven MD simulation package. The program
is distributed under the GNU General Public License. The full
source code and documentation are freely available online at
http://www.marcusbannerman.co.uk/dynamo. The program pro-
vides reference implements for many modern algorithms for
event-driven simulations and also includes several new tech-
niques for mitigating round-off error, improving speed, and opti-
mizing memory access patterns.The latter is achieved by preserve
cache locality through using Morton ordering to store neighbor
entries in spatially localized clusters.The speed of accessing mem-
ory appears to be a significant bottleneck in simulating systems
with simple potentials.Through benchmark simulations on single
component elastic-hard-sphere systems, we have demonstrated
that DynamO exhibits an O(1) scaling with system size of the
computational cost of executing events. This leads to an overall
scaling of O(N) for a set duration of simulation time. This allows
the rapid simulation of both complex and large (107 particle/atom)
systems while extracting the long-time behavior.

Many systems can be explored with the package in its current
state;however,there are a few planned extensions which will bring
the package to the level of generality of modern soft potential
packages.

Stepped potentials[21] are already available in DynamO,allowing
the straightforward approximation of rotationally symmetric soft
potentials. Asymmetric potential dynamics are significantly more
complex,especially in the case of hard particles.[64] The determina-
tion of the time to collision requires considerable care, and these
algorithms are often specialized to the underlying potential.[65] On
the other hand, soft potential dynamics are widely used for mod-
elling due to the relative ease with which new potentials can be
implemented. A natural step forward for event-driven dynamics is
in the implementation of the framework developed by van Zon
and Schofield,[66] which generalizes the implementation of asym-
metric discrete models by using a soft potential to generate and
solve the dynamics of an equivalent “terraced” potential. A partial
implementation is already available, although care must still be
taken in the discretization of the soft-potential; further research is
needed to develop this technique.

Long-ranged potentials, such as those due to electrostatic
interactions, do not yet have an event-driven equivalent. The
implementation of a stepped force field is not difficult; how-
ever, coupling the particle positions to the field is not trivial.[42]

The detection of events becomes prohibitively expensive due to
the added complexity of the free flight phase and typically only
exists to ensure that an underlying time stepping integration does

Journal of Computational Chemistry http://wileyonlinelibrary.com/jcc 3335



M.N.Bannerman,R. Sargant, and L. Lue

Figure 9. The class hierarchy of DynamO. Only the classes key to the algorithm are displayed. Arrows indicate the nesting of classes, and stacked boxes indicate
multiple instances of the class may occur.

not fail by incorrectly generating overlapping hard particles.[42] In
the limit of a weak and long-ranged field within a large system,
this coupling might be implemented as a boundary condition
of a stepped potential grid. These techniques must be devel-
oped before event-driven dynamics can be effectively utilized in
modeling charged systems.

Event-driven simulations are serial by nature;however,attempts
have been made to develop parallel algorithms.[67, 68] The sim-
ulations are split into computational cells and divided among
a collection of processors. Each cell is then run independently
of all others until an event occurs at the boundaries of the
cells, forcing a synchronization. As the number of processors
increases, the synchronization events become more frequent and
will limit the scalability; however, excellent performance has been
demonstrated for up to 128 processors.[68] At the core of these
parallel algorithms is a serial implementation, and DynamO has
already been used to simulate systems of 32 million particles
on a single processor. Yet, parallel computation will be required
as the complexity of the underlying potentials increases. Fur-
ther developments are needed to optimize memory usage and
to explore the possibility of parallelizing the algorithm within a
computational cell.

Appendix

Program Design and Features

The development of DynamO has focused on generating a flexi-
ble, modular simulator where systems can be constructed from an
array of available interactions, conditions, and dynamics. DynamO
is written in C++ using an object orientated design. This helps
ensure that the code is both extensible and maintainable, pro-
vided the classes have well defined interfaces and tasks. All input
and output files are in XML to allow easy generation and alteration
of system conditions.The implementation of DynamO utilizes only
free, open source libraries, including the BOOST (www.boost.org)
libraries.

DynamO was originally written to perform NVE MD simulations
of particles interacting through spherically symmetric, discrete
potentials. However, because of its flexible design, DynamO has
been extended to perform a wide variety of calculations for several

different types of systems. The dynamics of infinitely thin lines[65]

has already been incorporated within DynamO, and other shapes
can also be included. Constant temperature simulations are per-
formed through the use of the Andersen thermostat.[62] Multiple
simulations can be executed concurrently and combined with the
replica exchange method[69] to expedite the equilibration of sys-
tems with rough energy landscapes. Umbrella potentials can also
be applied to sample specific regions of the phase space of a
system. Finally, stepped potentials can be used to approximate
rotationally symmetric soft potentials.

Alternate dynamics can also be easily implemented within
DynamO.For example, compression dynamics, where the particles
in the system grow with time, is already implemented. DynamO is
also used[45, 48] as a framework to perform direct simulation Monte
Carlo calculations for the Enskog equation.

Simple code hierarchies have been suggested previously[70];
however, the level of complexity of modern simulations requires a
finer grained class structure than previously outlined.

The class hierarchy of DynamO is presented in Figure 9.Typically
each class has several implementations which are selected at run
time through the input files. Below, we detail the scope of each
class, along with the currently implemented features:

Coordinator: Abstracts the user interface and system calls.

This class encapsulates the entire program and provides the
user interface.The initialization of operating system features, such
as threading, is also performed here.

Engine: Organizes a collection of simulations to achieve a task.

In its simplest form, a single simulation is run to obtain output;
however, replica exchange techniques[69] and a method to per-
form isotropic compression of configurations[71] are also available.
The replica exchange technique runs several simulations in par-
allel with a Monte Carlo move to increase the ergodicity of low
temperature trajectories.

Simulation: Encapsulates a single simulation.

This class represents a single simulation, containing an array
of particles, classes describing the dynamics, and data collection
classes. The primary function of the simulation class is to initialize
and maintain these classes in evolving the system through time.

Scheduler:Maintains the list of future events.

3336 http://wileyonlinelibrary.com/jcc Journal of Computational Chemistry



DynamO:Molecular Dynamics Simulator

This class is responsible for executing events and maintaining
the FEL. Several variants exist, a “dumb” scheduler, a scheduler
capable of interfacing with a specialized Global that implements
a neighbor list, and a multithreaded neighbor-list scheduler.

Event Sorter: Sorts events in the FEL.
Provides a method of sorting the FEL,which contains an array of

PELs. A complete binary tree[55] and a bounded priority queue[56]

are implemented.

Particle: Container for single particle data.
This class encapsulates the minimal single particle data. This

includes the particle ID number, position, velocity, and local time.

Output Plugins: Data collection routines.
A wide range of plugins are available, including radial

distribution functions, the complete set of Green-Kubo
expressions for mixtures, and visualization plugins for VMD
(www.ks.uiuc.edu/Research/vmd), Povray (www.povray.org), and
Geomview (www.geomview.org).

Ensemble: Describes the ensemble of the simulation.

This is used to ensure the simulation ensemble is valid for certain
output plugins and for replica exchange.

Dynamics: Encapsulates the dynamics methods of the system.

The dynamics class initializes and maintains classes relating to
the dynamics of the system.The actual dynamics are implemented
in classes contained within this class.

Units: Provides functions to scale between simulation and input

units.

Simulations are typically optimal in a unit set other than the
input settings.For example,if the dimensions of the simulation box
are scaled to one then the enforcement of the periodic boundary
conditions reduces to a rounding operation.[72]

Liouvillean: Contains simple functions to describe the evolution

of the system.

This class implements event testing for basic shapes (e.g.,
spheres, lines, planes), particle evolution and event dynamics.
These are then used by interactions, locals, and globals to imple-
ment an event. Several implementations exist, including New-
tonian, isotropic compression, Enskog direct simulation Monte
Carlo (DSMC) in Sllod coordinates,[73] and axisymmetric rotational
dynamics.

Boundary Conditions: Specifies the limits of the simulation box.

Square, rectangular, periodic, sliding brick shearing,[74] and
infinite boundary conditions are currently implemented.

Interaction: Two particle events.
Interactions between two particles are derived from this class.

Many interactions have already been implemented (e.g., stepped
potentials, hard spheres, parallel cubes, square wells, square-
well bonds,[75] thin needles,[65] and an optimized square-well
sequenced-polymer interaction).

Global: Single particle events.
Events,which affect only one particle,regardless of its position in

the simulation, are derived from this class.This is primarily used for
neighbor lists, specializations include overlapping cells,[52] mixed
methods,[53] cells in shearing, Morton-ordered neighbor lists, and

a sentinel event to ensure the nearest image condition does not
result in invalid dynamics at low density/small system size.[65]

Local: Single particle event, localized in space.
These events only effect a region of space and are inserted

into the neighbor lists when available. This is to reduce the num-
ber of event tests required. Solid, thermostatted,[60] and oscillating
planar/cylindrical/spherical walls are implemented here.

System: Simulation andmultiple-particle events.

Any type of event, which is not compatible with the definition
of a local, global, or interaction, is implemented here. Includes
DSMC interactions,[76] Andersen thermostats,[62] and simulation
termination conditions.Umbrella potentials are also implemented
here as they are many-body interactions.

[1] J. Fish, J Nanoparticle Res 2006, 8, 577.

[2] T. Hansson, C. Oostenbrink, W. van Gunsteren, Curr Opin Struct Biol 2002,
12, 190.

[3] C.F. Wong and J.A. McCammon, Protein simulations: Advances Prot. Chem
2003, 66, 87.

[4] W. L. Jorgensen, Science 2004, 303, 1813.

[5] A. Rahman, Phys Rev 1964, 136, A405.

[6] L.Verlet, Phys Rev 1967, 159, 98.

[7] S. Plimpton, J Comput Phys 1995, 117, 1.

[8] D. V. D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen,
J Comput Chem 2005, 26, 1701.

[9] B. Hess, C. Kutzner, D. Van Der Spoel, E. Lindahl, J Chem Theory Comput
2008, 4, 435.

[10] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R. D. Skeel, L. Kalé, K. Schulten, J Comput Chem 2005, 26, 1781.

[11] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L.
Klepeis, I. Kolossváry, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, and
D. E. Shaw, In Proceedings of the ACM/IEEE Conference on Supercomput-
ing (SC06),Tampa, Florida, 2006.

[12] H.-J. Limbach, A. Arnold, B. A. Mann, C. Holm, Comput Phys Commun 2006,
174, 704.

[13] T. E. Cheatham, III, M.Young, Biopolymers 2001, 56, 232.

[14] J. Ponder, D. Case, Adv Prot Chem 2003, 66, 27.

[15] A. MacKerel, Jr., C. Brooks, III, L. Nilsson, B. Roux, Y. Won, M. Karplus, In The
Encyclopedia of Computational Chemistry; von R. Schleyer, P., Ed.; Wiley:
Chichester, 1998, 1, 271.

[16] P. A. Cundall, O. D. L. Strack, Géotechnique 1979, 29, 47.

[17] N. Brilliantov, F. Spahn, J.-M. Hertzsch,T. Pöschel, Phys Rev E 1996, 53, 5382.

[18] P. Deltour, J. L. Barrat, Journal De Physique I 1997, 7, 137.

[19] P. K. Haff, B.T.Werner, Powder Technol, 1986, 48, 239.

[20] O. R.Walton, R. L. Braun, J Rheol, 1986, 30, 949.

[21] G. Chapela, L. E. Scriven, H.T. Davis, J Chem Phys 1989, 91, 4307.

[22] J. R. Elliott, Fluid Phase Equilibria 2002, 194–197, 161.

[23] V. Molinero, W. A. Goddard, J Phys Chem B 2004, 108, 1414.

[24] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. de Vries, J Phys
Chem B 2007, 111, 7812.

[25] L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, S.-J.
Marrink, J Chem Theory Comput 2008, 4, 819.

[26] B. J. Alder,T. E.Wainwright, J Chem Phys 1957, 27, 1208.

[27] I. Goldhirsch, G. Zanetti, Phys Rev Lett 1993, 70, 1619.

[28] O. Unlu, N. H. Gray, Z. N. Gerek, J. R. Elliott, Ind Eng Chem Res 2004, 43, 1788.

[29] J. R. Elliott, A.Vahid, A. D. Sans, Fluid Phase Equilibr 2007, 256, 4.

[30] A.Vahid, J. R. Elliott, AIChE J 2010, 56, 485.

[31] J. L.Woodhead, C. K. Hall, Langmuir 2010, 26, 15135.

[32] A. J. Schultz, C. K. Hall, J. Genzer, J Chem Phys 2002, 117, 10329.

[33] H. D. Nguyen, C. K. Hall, Biophys J 2004, 87, 4122.

Journal of Computational Chemistry http://wileyonlinelibrary.com/jcc 3337



M.N.Bannerman,R. Sargant, and L. Lue

[34] C. K. Hall, V. A. Wagoner, In Amyloid, Prions, and Other Protein Aggregates,
Part B; I. Kheterpal, R.Wetzel, Eds., Academic Press, 2006, 412, 338.

[35] A. J. Marchut, C. K. Hall, Proteins: Struct, Funct, Bioinf 2007, 66, 96.

[36] M. Cheon, I. Chang, C. K. Hall, Proteins Struct Funct Bioinf, 2010, 78, 2950.

[37] M. P. Allen, D. Frenkel, J.Talbot, Comput Phys Rep 1989, 9, 302.

[38] B. J. Alder,T. E.Wainwright, J Chem Phys 1959, 31, 459.

[39] D. C. Rapaport, J Comput Phys 1980, 34, 184.

[40] B. D. Lubachevsky, Int J Comput Phys 1991, 94, 255.

[41] M. Marin, D. Risso, P. Cordero, J Comput Phys 1993, 109, 306.

[42] H. Sigurgeirsson, A. Stuart, W.-L.Wan, J Comput Phys 2001, 172, 766.

[43] A. Donev, Simulation 2009, 85, 229.

[44] M. N. Bannerman, L. Lue, L.V.Woodcock, J Chem Phys 2010, 132, 084507.

[45] M. N. Bannerman, T. E. Green, P. Grassia, L. Lue, Phys Rev E 2009, 79,
041308.

[46] M. N. Bannerman, J. E. Kollmer, A. Sack, M. Heckel, P. Müller, T. Pöschel, Phys
Rev E 2011, 84, 011301.

[47] M. N. Bannerman, L. Lue, J Chem Phys 2010, 133, 124506.

[48] M. N. Bannerman, L. Lue, J Chem Phys 2009, 130, 164507.

[49] W. G. Hoover, C. G. Hoover, M. N. Bannerman, J Stat Phys 2009, 136, 715.

[50] M. N. Bannerman, J. Magee, L. Lue, Phys Rev E 2009, 80, 021801.

[51] M. Marin, P. Cordero, In Proceedings of the 8th Joint EPS-APS International
Conference on Physics Computing, In P. Borcherds, and M. Bubak, Eds.,
World Scientific, 1996, 315.

[52] A.T. Krantz,TOMACS 1996, 6, 185.

[53] A.Vrabecz, G.Tóth, Mol Phys 2006, 104, 1843.

[54] D. R. Jefferson,TOPLAS 1985, 7, 404.

[55] M. Marin, P. Cordero, Comput Phys Commur 1995, 92, 214.

[56] G. Paul, J Comput Phys 2007, 221, 615.

[57] M.P.Allen,D.J.Tildesley,Computer Simulation of Liquids; Oxford University
Press: Bristol, 1987.

[58] R. Raman, D. S.Wise, IEEE Trans Comput 2008, 57, 567.

[59] M. D. Adams, D. S.Wise, ACM SIGPLAN Notices, 2006, 41, 39.

[60] T. Pöschel, T. Schwager, Computational Granular Dynamics; Springer: New
York, 2005.

[61] M. D. Atkinson, J.-R. Sack, N. Santoro, T. Strothotte, Commun ACM 1986, 29,
996.

[62] H. C. Andersen, J Chem Phys 1980, 72, 2384.

[63] J.Weidendorfer, M. Kowarschik, C.Trinitis, In Computational Science—ICCS
2004; Springer-Verlag: Berlin, 2004, 3038, 440.

[64] A. Donev, S.Torquato, F. Stillinger, J Comput Phys 2005, 202, 737.

[65] D. Frenkel, J. F. Maguire, Mol Phys 1983, 49, 503.

[66] R. van Zon, J. Schofield, J Chem Phys 2008, 128, 154119.

[67] M. Marin, Comput Phys Commun 1997, 102, 81.

[68] S. Miller, S. Luding, J Comput Phys 2004, 193, 306.

[69] R. H. Swendsen, J.Wang, Phys Rev Lett 1986, 57, 2607.

[70] K. Erleben, Module based design for rigid body simulators Technical
report, University of Copenhagen, 2002.

[71] L.V.Woodcock, Ann NY Acad Sci 1981, 371, 274.

[72] J. M. Haile, Molecular Dynamics Simulation—Elementary Methods; Wiley-
Interscience: New York, 1997.

[73] M. A. Hopkins, H. H. Shen, J Fluid Mech 1992, 244, 477.

[74] A.W. Lees, S. F. Edwards, J Phys C 1972, 5, 1921.

[75] S.W. Smith, C. K. Hall, B. D. Freeman, J Comput Phys 1997, 134, 16.

[76] G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows;
Oxford University Press: Oxford, 1994.

Received: 20 April 2011

Revised: 4 July 2011

Accepted: 25 July 2011

Published online on 29 August 2011

3338 http://wileyonlinelibrary.com/jcc Journal of Computational Chemistry


