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Transient Structures in a Granular Gas
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A force-free granular gas is considered with an impact-velocity-dependent coefficient of restitution
as it follows from the model of viscoelastic particles. We analyze structure formation in this system by
means of three independent methods: molecular dynamics, numerical solution of the hydrodynamic
equations, and linear stability analysis of these equations. All these approaches indicate that structure
formation occurs in force-free granular gases only as a transient process.
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Cluster and vortex formation in force-free granular
gases is a most striking phenomenon which makes these
systems so distinct from gases of elastic particles, like
molecular gases. First detected and explained by
Goldhirsch and Zanetti [1] and McNamara [2], clustering
and later vortex formation [3] have been intensively
studied (e.g., [3–5]). Clustering has been also reported
in recent simulations of the hydrodynamic equations [6].
In all these studies the simplifying assumption of a con-
stant coefficient of restitution " has been used.

It is known, however, that the coefficient of restitution
is not a material constant but a function of the impact
velocity, which for the most simple model of viscoelastic
spheres [7] reads

"�g� � 1� �jgj1=5 � �3=5��2jgj2=5 � � � � : (1)

Here g is the normal component of the impact velocity,
and � is a known function of the particles’ material
properties [7]. The typical value of ", corresponding to
the thermal velocity vT �

������������������
2T�t�=m

p
[T�t� is the tempera-

ture of the gas and m � 1 is the particle mass] behaves as
"T 	 1� �T1=10; i.e., it tends to the elastic limit, " ! 1,
as the gas cools down, T ! 0.

Since a force-free gas of elastic particles tends to be
homogeneous, one can naively assume that a granular gas
of viscoelastic particles tends to be finally uniform as
well. However, this is not necessarily true: The collisions
become perfectly elastic only in the limit g � 0 when all
particles are at rest. If the gas cools down too fast the
residual structures may get frozen and persist due to a
lack of kinetic energy.We illustrate this for a more general
model of "�g�, with �1� "2T� 	 T
. The cooling rate
of such gas is estimated as _T 	�n�1� "2T�T

3=2 	

�nT3=2�
 [1,8], where n is the gas number density. The
gas density decreases with time due to cluster growth. If
we assume n	 t�� (0<�< 1) [9], we obtain the esti-
mate for the gas temperature, T 	 t�z, z � 2�1�
��=�1� 2
�, and for the gas pressure, P � nT 	 t���z.
If Tcl and ncl are, respectively, the temperature and num-
ber density inside the clusters, similar estimates yield
0031-9007=04=93(13)=134301(4)$22.50 
_Tcl 	�nclT
3=2�

cl . Assuming that ncl keeps approxi-

mately constant, we obtain Tcl 	 t�2=�1�2
� and estimate
the pressure in clusters, Pcl 	 f�ncl�Tcl 	 t�2=�1�2
�,
where the factor f does not depend on T. The necessary
condition for clusters to dissolve reads Pcl >P for t ! 1;
i.e., �� z > 2=�1� 2
�. With z given above this is
equivalent to the condition 
> 1=2; that is, gases only
with a pronounced dependence of "T on T evolve to a
uniform final state. In [10] a drastically simplified
velocity-dependent coefficient of restitution was studied:
"�g� � const if g � g
 and " � 1 if g < g
 with g
 being
a constant. For a gas of particles, interacting by this
collision law (which qualitatively corresponds to 
 !
1), cluster formation is a transient phenomenon, although
the temperature decays to zero [10]. For gases of visco-
elastic particles 
 � 1=10< 1=2; hence, it is not clear
whether structures arise only temporarily in these sys-
tems or appear and get frozen.

To address this problem we study the evolution of a gas
of viscoelastic particles by means of three independent
methods: event-driven molecular dynamics (MD), nu-
merical solution of the hydrodynamic (HD) equations,
and linear stability analysis of the HD equations.

The MD simulations with periodic boundary condi-
tions were performed for a 2D gas of N � 105 particles of
diameter � � 1, with the coefficient of restitution ac-
cording to Eq. (1). The gas has the packing fraction � �
n��2=4 � 0:2, initial temperature T0 � 1, and the dis-
sipative coefficient � � 0:0577 which corresponds to the
initial coefficient of restitution "T 	 1� � ’ 0:94.
Starting the simulations with homogeneous distribution
of particles [homogeneous cooling state (HCS)], clusters
appear and grow until they reach the system size; then
they dissolve (Fig. 1). Figure 2 shows the evolution of the
average particle energy, E�t� � �1=2N�

P
imv

2
i , which

evolves in the HCS according to the modified Haff law
[8],

E�t�=E0 � Th�t�=T0 � �1� t=�0�
�5=3; (2)

where
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FIG. 1. MD simulation of N � 105 viscoelastic particles.
Clusters appear as transient structures. The snapshots where
taken after 0, 200, 800, 7500, 20 000, and 70 000 collisions per
particle.
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��1
0 ��24=5�q0�

�1
c �0��; ����=C1��T0=m�1=10: (3)

Here ��1
c �t� � 2n�g2���

�������������������
�T�t�=m

p
is the mean collision

time, g2��� � �1� 7�=16�=�1���2 is the contact value
of the pair correlation function. The constants q0 � 0:173
and C1 � 1:1534 are also known analytically [8]. At later
times the deviation from the Haff law becomes pro-
nounced; however, as the gas further evolves the clusters
and vortices dissolve, and the system approaches the
regime of homogeneous cooling; see Fig. 1. In the case
of the above mentioned simplified model for "�g� [10], the
temperature does not eventually return to the Haff law
but decays logarithmically slow.

To explain the observed effects we consider the hydro-
dynamic equations [6,11,12] for the number density
n� ~r; t�, flow velocity ~u�~r; t�, and temperature field T� ~r; t�:

@n
@t

� �ri�nui�; (4)

@ui
@t

� ��ujrj�ui �
1

nm
rj�#ijklrkul � P�ij�; (5)

@T
@t

� ��ujrj�T �
P
n
�riui� �

1

n
#ijkl�rkul��rjui�

�
1

n
ri�&riT� �

1

n
ri�'rin� � (T: (6)
FIG. 2. The energy decay as obtained by MD (left) and by the
numerical solution of the HD equations (right). The dash-
dotted lines show the modified Haff law, Eq. (2). The end of
the HCS is indicated by the vertical dashed lines.
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Here P � nT�1� �1� "��g2���� and #ijkl �

#��ik�jl � �il�jk � �ij�kl� is the viscosity tensor. # and
&, respectively, are the coefficients of viscosity and ther-
mal conductivity; ( is the cooling coefficient and the
coefficient ' is specific for granular gases [13,14]. The
coefficients #, &, ', and ( have been recently derived for
a gas of viscoelastic particles [12]. They may be written
as an expansion (b � #; &;'; (),

b � b0 � b1�0 � b2�02; (7)

where �0�t� � ��2T�t�=T0�
1=10 is the time-dependent dis-

sipation parameter and the microscopic expressions for
b0, b1, and b2 are given in [12]. We stress that the tem-
perature dependence of these coefficients differs drasti-
cally from the case " � const; see, e.g., [13–15].

We numerically solve the hydrodynamic equations
(4)–(6) with the coefficients Eq. (7) calculated for the
same microscopic parameters �, �, and m as used for the
MD simulations. We use a finite volume discretization
scheme of global second order on a staggered grid. The
integration in time is done through a transient variation
diminishing multistep scheme of fourth order [16].We use
a 50� 50 computational domain with periodic boundary
conditions. Special care has been taken treating the ad-
vection terms in (4)–(6) [17].

We start the numerical integration with random initial
conditions for the density and flow-velocity field (thermal
fluctuations) and confirm the transient character of the
pattern formation, Fig. 3. The cooling curve for E�t� [18]
demonstrates qualitatively the same behavior as observed
in the MD simulations [Fig. 2 (right)]. To study the
mechanism of pattern evolution more directly we consid-
ered initial conditions with a superimposed sinusoidal
mode and observed similar transient structures. For rea-
FIG. 3. The gas density obtained from the numerical solution
of the HD equations (4)–(6) with periodic boundary and
random initial conditions. The parameters �;�; T0 are the
same as in the MD simulations. Density inhomogeneities
(clusters) appear but eventually dissolve. The snapshots were
taken after 0, 200, 800, 7500, 20 000, and 70 000 collisions
per particle, in correspondence to the snapshots in Fig. 1.
The number of collisions was computed using the average
temperature.

134301-2



VOLUME 93, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S week ending
24 SEPTEMBER 2004
sons explained below, we have chosen the transverse
velocity (shear) mode. It has the components uy� ~r; 0� �
uky�0� sin�kx�, ux�~r; 0� � 0, T�~r; 0� � T0, and n� ~r; 0� �
nh, where k � �2�=L�l, (l � 1; 2; . . . ) is the wave number,
L is the system size, and uky�0� is the initial amplitude of
the mode. Solving the hydrodynamic equations numeri-
cally we analyze the evolution of the shear mode, Fig. 4,
the longitudinal mode, and the density mode, Fig. 5. As it
follows from Fig. 4, the shear mode (in reduced units) is
unstable for wave vectors smaller than a threshold value.
This instability leads to the formation of vortices [3,4].
The growing shear mode initiates the growth of the mode
of longitudinal velocity which, in its turn, causes a
growth of the density mode corresponding to clustering;
see Fig. 5. This indicates that clustering is driven mainly
by a nonlinear mechanism [1,4]: As explained below, a
single transverse mode cannot excite by a linear mecha-
nism, neither a longitudinal mode, nor a density mode.
Hence only nonlinear coupling between the shear and
longitudinal modes may cause the observed excitation
of the longitudinal mode [19], which further initiates
the growth of the density mode, i.e., clustering. Similar
mechanisms are responsible for pattern formation in a
gas with " � const [1,4]. Contrary to the case " � const,
in a force-free gas of viscoelastic particles all modes
eventually decay, and only transient structures appear.

To obtain quantitative estimates we perform a stability
analysis of the HD equations (4)–(6) with respect to the
HCS at density nh, and temperature Th�t�. We assume that
the deviations �T�~r; t� � T� ~r; t� � Th�t� and �n�~r; t� �
n� ~r; t� � nh are small,

.�
�T
Th

�1; /�
�n
nh

�1; j ~wj�
j ~uj
vT

�1 (8)
FIG. 4. Evolution of the reduced amplitude of the shear
mode, wk;?��� � uky���=vT���. Initially only a single shear
mode with k � 2�=L and with an amplitude of the order of
the thermal fluctuations is excited. Full lines: numerical solu-
tion of the hydrodynamic equations; dashed lines: results of the
linear analysis, Eq. (14). The parameters are the same as in
Fig. 3. Dimensionless time and length are used (see the text).
Note that the different k correspond to a different system size.
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and linearize these equations. Below we use the dimen-
sionless time �, measured in units of �c�t�=2, and
dimensionless length ~̂r, measured in units of l0=2 (l�1

0 ��������
2�

p
n�g2��� is the mean free path) and write the line-

arized equations for the Fourier transforms of the fields
.� ~r; t�, /� ~r� and ~w�~r; t�:

@ ~w ~k?

@�
� �
�0��� � k2� ~w ~k?; (9)

@/~k

@�
� �ikw~kjj; (10)

@. ~k

@�
�� �4 ~'1k

2 � 2
��0���/~k

� �4k2 � �6
=5��0����. ~k � ikw~kjj; (11)

@w~kjj

@�
� �

1

2
ik/~k �

1

2
ik. ~k � �
�0��� � k2�w~kjj: (12)

Here w~kjj and ~w ~k? are, respectively, the longitudinal (i.e.,

parallel to the wave vector ~k) and transversal (i.e., per-
pendicular to ~k) components of the Fourier mode ~w ~k�t�,

 � 29=10q0 � 0:323 and ~'1 � 1:811 are the constants.
To obtain Eqs. (9)–(12) we keep only leading-order terms
with respect to the dissipative parameter �0�t� in the
expansion Eq. (7) for the coefficients #; &;'; ( [12].
Note the important difference between the linearized
equations (9)–(12) and the corresponding equations for
the case " � const: In the latter case the coefficients in
these equations are constant (e.g., [4,5]), while in the
former case they depend on time via

�0��� � 21=10��1� 2q0��=5��1: (13)

The solution for ~w ~k?��� reads

~w ~k?��� � ~w ~k?�0��1� 2q0��=5�5e�k2�; (14)

where ~w ~k?�0� is the initial amplitude of the shear mode.

There exists a critical wave number k
? �
�����������
2q0�

p
, which

separates two regimes: Shear modes with k � k
? always
decay, while those with k < k
? initially grow and reach a
FIG. 5. Evolution of the reduced amplitude of the longitudi-
nal mode, wk;k��� � ukx���=vT��� (left) and of the density
mode /k��� (right). Parameters, units, and initial conditions
are the same as in Fig. 4.
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maximum,

wmax
~k?

� w~k?�0�
�
2q0�

k2e

�
5
exp

�
5k2

2q0�

�
(15)

at �
k? � 5=k2 � 5=�2q0��; then they decay and die off
completely. The formation of vortices is attributed to the
growth of the shear mode ~w ~k? [4,5]; therefore, the vor-
tices of size 	k�1 decay after a transient time 	�
k?. Any
system of size 	L has a minimal wave number 	2�=L;
hence all shear modes decay by the time
�
? 	 5L2=4�2 � 5=�2q0��.

To perform the stability analysis for the other three
modes we write Eqs. (10)–(12) in the form

_� k � M̂k����k; �k � �/~k; . ~k; w ~kk�
T: (16)

The matrix M̂k��� has time-dependent eigenvalues and
eigenmodes, which for small dissipation � are analogous
to the sound and the heat mode of a gas with a constant "
[4,5]. For large wave numbers k all the modes decay,
while for small k the heat mode may grow. The critical
k may be found from the condition _�k � 0, or
detjM̂k���j � 0:

k

k
��� ’

1

4
���
5

p �21=10
��1=2
�
1�

2

5
q0��

�
�1=2

: (17)

Modes with k > k

jj
�0� always decay, while those with k <

k

jj
�0� may initially grow. Since k


jj
��� decreases with time

even a mode with k < k

jj
�0�, which initially grows, starts

to decay after a transient time, when the condition k >
k

jj
��� is fulfilled.
The value of k


jj
��� becomes smaller than the minimal

wave number 2�=L at time �

jj
	 L2=16� 5=�2q0��; i.e.,

for � > �

k

the amplitude of any of the modes /~k, . ~k, w~kk

decays. Note that �
? > �

jj

in agreement with the simula-
tion results (Figs. 4 and 5). Since clustering and vortex
formation is attributed to the instability of the heat and
shear modes [1,3,14] we conclude that the eventual decay
of all modes predicted by the linear stability analysis
implies the transient structure formation.

We have studied a force-free granular gas of viscoelas-
tic particles by means of MD, a numerical solution of the
HD equations, and a linear stability analysis of the HD
equations. All three methods indicate that structure for-
mation in a gas of viscoelastic particles occurs only as a
transient phenomenon, whose duration increases with the
system size N for the same particle number density.
Correspondingly, for larger N the structures appear to
be denser and more long-lived, whereas an extrapolation
to the unbounded system cannot be easily concluded from
these arguments. The finite duration of the cluster phase
is in sharp contrast to the case of a gas with a simplified
collision model " � const, where structures have been
proven to arise and to continuously develop. In our simu-
lations, due to the limited system size and periodic
134301-4
boundary conditions, we have unphysical self-
interactions of the clusters. We believe, however, that
this effect does not invalidate the main conclusion of
our study of the transient character of structure formation
in force-free granular gases. This expectation is also
supported by MD simulations using the simplified model
"�g� given in [10] which has the same limit as Eq. (1),
"�g � 0� � 1: Here the clusters arise and grow; however,
they decay before growing to system size [10].
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