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Abstract. We investigate the evolution of the velocity distribution function of a gran-
ular gas composed of viscoelastic particles in the homogeneous cooling state, i.e. be-
fore clustering occurs. The deviation of the velocity distribution function from the
Maxwellian distribution is quantified by a Sonine polynomials expansion. The first
non-vanishing Sonine coefficient a2(t), reveals a complex time dependence which al-
lows to assign the granular gas the property of an age. We discuss the possibility to
measure the age of a granular gas.

1 Introduction

Granular Gases as rarefied systems of granular particles in the absence of gravity
may be exemplified by a cloud of interstellar dust. Similar as molecular gases
Granular Gases may be described within the concepts of classical Statistical
Mechanics, such as temperature T, velocity distribution function f(v), etc. Once
initialized with a certain velocity distribution, Granular Gases cool down due
to inelastic collisions of their particles. Although these systems are extremely
simple, in principle, they reveal a variety of structure formation and much work
has been done recently to characterize the properties of cooling Granular Gases
(see [1] with many references therein).

Most of these results have been obtained under the assumption that the co-
efficient of restitution e which characterizes the loss of energy of two colliding
particles (see below), is a material constant. The assumption € = const., how-
ever, does not only contradict experiments which show that ¢ depends signifi-
cantly on the impact velocity [2[3], but it contradicts even some basic mechanical
laws [4]. The simplest physically correct description of dissipative particle col-
lisions is based on the assumption of viscoelastic material deformation during
collisions [4], which is valid for particle collisions in a certain range of impact
velocity and is in good agreement with experimental data [316].

We investigate the statistical properties of Granular Gases of viscoelastic
particles for which the dependence of the restitution coefficient on the impact
velocity € = €(Vimp) is known [HEJ7]. Starting from a homogeneous distribution
we study the early stage of its evolution, where no spatial structures, as clus-
ters [8[9] and vortexes [I0], have emerged yet. This stage is called the homoge-
neously cooling state. Our results show that the properties of Granular Gases
change qualitatively if one takes into account viscoelastic material properties,
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ie. € = €(vimp) [L1], as compared with the equivalent system, but under the
oversimplified assumption € = const..

In the next Section we discuss briefly the impact-velocity dependence of
the normal restitution coefficient. In Sec. [3| we introduce the method to study
the velocity distribution by means of the Boltzmann equation with the Sonine
polynomials expansion formalism, and discuss the results obtained for gases of
particles interacting with a constant restitution coefficient. Our main results,
which describe the time evolution of the velocity distribution for granular gases
of viscoelastic particles are derived in Sec. @l In Sec. Bl we discuss the concept
of the age of a granular gas which is based on the time evolution of the velocity
distribution. Finally, in conclusion we summarize our findings.

2 Two-Particle Interaction of Viscoelastic Spheres

The microscopic dynamics of granular particles is governed by the (normal)
restitution coefficient € which relates the normal components of the particle

velocities before and after a collision, v;; = v; — v; and v;j = v; —vj by
‘vzje = €|vje|. The unit vector e = T'ij/ ’Tij‘ gives the direction of the inter-

center vector 74 = r; — 7; at the instant of the collision. From the conservation
of momentum one finds the change of velocity for the colliding particles:

. 1 . 1
vi:vif§(1+e)(vij~e)e, vj:vj+§(1+e)<vij~e)e. (1)

For elastic collisions one has ¢ = 1 and for inelastic collisions € decreases with
increasing degree of inelasticity.

In literature it is frequently assumed that the restitution coefficient is a ma-
terial constant, e = const. Experiments, e.g. [2I8], as well as theoretical investiga-
tions [5] show, however, that this assumption is not consistent with the nature of
inelastic collisions, it does not agree even with a dimension analysis [4]. The im-

pact velocity dependence of the restitution coefficient € (vimp) = € (‘e’uij‘) has

been obtained by generalizing Hertz’s contact problem to viscoelastic spheres [5].
From the generalized Hertz equation [12] one obtains the velocity-dependent
restitution coefficient for viscoelastic spheres [7]

2/5 1/5 2 4/5 2/5
e=1-ClAx ‘evzj + Oy A%« ‘evij T (2)
with )
3/2 f
3 YVR®
e (3" 5
2 meft (1 —12)

where Y is the Young modulus, v is the Poisson ratio, and A depends on dissi-
pative parameters of the particle material (for details see [5]). The effective mass
and radius are defined as

Reﬁ = Rle/(Rl + Rg) ’I”I’Lef_f = mlmg/(ml + mg) (4)
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with R;/o and my o being the radii and masses of the colliding particles. The
constants are given by [4/[7]

I'(3/5)(/T 3
= ~ 1.1534 = - ~ 0.7982.
Cr = sprraig ~ 11 Cy = 2CF ~0.798 (5)

Equation (2)) refers to the case of pure viscoelastic interaction, i.e. when the
relative velocity |v;je| is not too large (to avoid plastic deformation of the par-
ticles) and is not too small (to allow to neglect surface effects such as roughness,
adhesion and van der Waals interactions). The dependence of € = €(|ev;;|)
(without the material dependence) was already mentioned in [6] where heuristic
arguments have been applied.

In what follows we consider a granular gas of identical viscoelastic spheres of
unit mass.

3 Kinetics of Granular Gases: The Case € = const.

The evolution of the velocity distribution function is generally described by the
Boltzmann-Enskog equation, which for the force-free case reads [T3IT4TH]:

%f( ) =ga(o /dvg/de@ —v12-€)|vis - €
X {Xf(vl ) )f(v2 ’ ) f(vlat)f(v27 )}_92( ) (faf)> (6)

where o = 2R is the diameter of particles, g2(c) = (2—1)/2(1—7)* (n = § ™no?
is packing fraction) denotes the contact value of the two-particle correlatlon
function [16], which accounts for the increasing collision frequency due to the
excluded volume effects; ©(z) is the Heaviside step-function. The velocities v7*
and v3* refer to the precollisional velocities of the so-called inverse collision,
which results with v; and vs as the after-collisional velocities. Finally the factor
X in the gain term appears respectively from the Jacobian of the transformation
dvi*dvy* — dvidvg and from the relation between the lengths of the collisional
cylinders €|vy; - e| dt = |v12 - €| dt. [I7]. For the constant restitution coefficient
€ = const. this reads y = e~2 [T4/1]], i.e., it is independent on the impact velocity
and, therefore, independent on time.
With the scaling Ansatz for the distribution function

$0.0) = e (205 ) = s 7, @

Yo

where n is the number density of the granular gas and vg(¢) is the thermal
velocity defined by

SnT(0) = [ v fw.0),= Snid(o) ®)
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the Boltzmann equation may be reduced to two independent equations: one for
the (time-independent) scaling function f(c), and the other one for the time-
dependence of the thermal velocity (i.e. for the temperature). Solving the equa-
tion for the temperature one obtains 7'(t) = To/ (1 + t/7)* [13).

The solution of the other equation for f(c), may be found in terms of the
Sonine polynomial expansion [I4[I8|[19]. For the case of € = const. it reads

f(e) = é(c) {1 + Zapsp(CQ)} , (9)

where ¢(c) = 742 exp(—c?) is the Maxwellian distribution for the rescaled
velocity, and the first few Sonine polynomials are
22 5x 15

So(r) =1, Sl($>:—l‘2+§, So(z) = — — = +

. 1
2 2 2 8 (10)

The leading (zero-order) term in Eq. (@) is the Maxwellian distribution, while
the next-order terms, characterized by the coefficients a; describe the deviation
of the distribution from the Maxwellian. For the case of € = const. the velocity
distribution function f (¢) is time-independent, therefore, the coeflicients of the
Sonine polynomials expansion are constants.

If the inelasticity is small, one can restrict to the first non-vanishing term
beyond the Maxwellian which has the coefficient as (a7 = 0, according to the
definition of temperature [I4JI8JTY]). For € = const. this coeflicient reads [20]

B 16(1 — €)(1 — 2¢%)
" 9+24d + 8ed + 41e + 30(1 —€)e?

(11)

ag

A more accurate expression for ay may be found in [19)].

4 Kinetics of Granular Gases: Viscoelastic Particles

For viscoelastic particles the restitution coefficient € depends on the impact ve-
locity due to Eq. (2). Hence, the factor y in the Boltzmann equation (@) is not
anymore constant as for € = const. but it reads

11 5
x=1+ gClAaz/O |vyg - e|1/5 + %012142044/5 |lviz - e|2/5 +- (12)

Using again the scaling Ansatz (@) the rhs of the Boltzmann equation does not
factorize into two parts, one depending only on the scaling function f (¢), and
another one, depending only on vg. Consequently, one can not obtain a set of
decoupled equations for f (¢) and for the temperature.

Nevertheless, it is worth to substitute the generalized scaling Ansatz

vp ()

flv,t) = fle,t) (13)
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into the kinetic equation (B). After some algebra Eq.(B) may be recast into the
form

0\ 0 - s
= (3+clacl> flety+B7 = flet) = I(F.f) (14)

where we define the dimensionless collisional integral

1(.F) = fies [ae (-crz-eersel {xf(ei Df(er ) - Fler.nf(e )} (15)
with the reduced factor y
5(:1+%015' lers - e + %055'2 lers - e|?® + - (16)
which depends now on time via a quantity
§'(t) = Aa®5 27 (1) = § [27(t) ) To]/*° (17)

Here § = Aa2/5[T0]1/10 and Tp is the initial temperature. We also define B =
B(t) = vo(t)g2(c)o?n, and the moments of the dimensionless collision integral

pp = f/dclcff (f,f) . (18)

According to the definitions (), (I8) and of B, the second moment uy defines
the evolution of the temperature:

ar = 1gg(U)UZHUg/dclc%f (f, f) = —gBTuQ. (19)
da 3 3
The velocity distribution function we again describe by a Sonine polynomials
expansion as introduced in Eq. ({). Since in contrast to the case € = const., the
Boltzmann equation for a gas of viscoelastic particles does not factorize into a
time dependent equation for temperature and a time-independent equation for
the velocity distribution, the Sonine coefficients a; are not constants but depend
explicitely on time, i.e. one has now

fle,t) = ¢(c) {1 + Zap(t)sp(c2)} . (20)

Equations for a,(t) may be found by multiplying both sides of Eq.([I4) with
¢ and integrating over de;. One obtains

%p (cPy — B! del/kp = lp (21)
k=1

where integration by parts has been performed and where we define

Vgp = /¢(c)cp5k(02)dc; (cP) = /cpf(c,t)dc. (22)
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From (ZI) we see already that the granular temperature and the Sonine
coefficients and, hence, the distribution function do not evolve independently.

The calculation of vy, is straightforward; the first few of them read 12 = 0,
vas = 2. The odd moments {c*"*1) are zero, while the even ones, <02"> may
be expressed in terms of a; with 0 < k < n. Calculations show that < =
implying a; = 0, according to the definition of temperature @) (e.g.[14]), a
that (¢*) = 12 (14 ao).

Now we assume that the dissipation is not large so that the deviation from
the Maxwellian distribution may be sufficiently described by the second term in
the expansion (@) only, with all higher-order terms with p > 2 discarded. Then
(1) is an equation for the coefficient as. Using the above results for vog, vag,
<62> and <c4> it is easy to show that Eq.(2I) converts for p = 2 into identity,
while for p = 4 it reads:

. 4 4
ag—gBu2(1+a2)+ﬁBu4:O. (23)

With the approximation f = ¢(c)[14az(t)S2(c?)] the time-dependent coefficients
ip(t) may be expressed in terms of ay due to the definition (I8). Using the
properties of the collision integral (e.g. the conservation of the total momentum
at collision) one can obtain relations for the p,(t) (e.g. [14]):

Hp = —% /dcl /dC2/deQ(—c12 . 6) |612 . €| ¢(Cl)¢(02) X
{1+ as [Sa(c]) + S2(c3)] + a3 Sa(c})Sa(c3) } Alel + )

where Ay(¢;) = [(cf) — ¥(e¢;)] denotes the change of some function ¥ (¢;) in a

direct collision. Calculations up to the second order in ¢ yield [17]

2 2
=> Z And ' Fag (24)
k=0 n=0

where the coefficients A are pure numbers: Agg = 0, Ag1 = 0, Age = 0, A9 = wo,
A = $xwo, A1z = siigwo, Az = wi, Agy = iégwl and Az = 5385w, with
wo = 2V2m2Y107 (2) Oy ~ 6.48562 and wy = V212171 (3£) CF ~ 9.28569.

Similarly

2 2
pa=_ > Bind'ta} (25)
k=0n=0
with BOO = 0, 801 = 4y 271’, Bog = \/ 27T 810 = wo, 811 = %WO, 812 =

567 o __ 149054 _ 3481&
Tas00w0, B2o = fgw1, Ba1 = Tz w1 and Bay = 5000000“’1

Thus, Egs.([23) and (@), together with Eqs.([24) and (28] form a closed set to
find the time evolution of the temperature and of the coefficient as. In contrast
to the case of constant restitution coefficient where as = const., in a gas of
viscoelastic particles the time evolution of temperature is coupled to the time
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evolution of the Sonine coefficient as. This coupling may lead to a rather peculiar
time-evolution of the system.

Introducing the reduced temperature u(t) = T(t)/Tp we recast the set (23)),
(@) into the form

1 /5 02T L\ 1 (5 119 1547
—ud (24 Zagt——ad | ——qdutt [ o —art——ad ) =0 (26
R (3+5a2+500“2) o O (3+240“2+128000“2) (26)

. 1
as — rou’? s (I14+a2)+ 5r0u1/2u4 =0 (27)

where we introduce the characteristic time

-1
T(;l = ?CIO(S . 7'0(0)_1 = ?qOé (4\/7?92(0)0’211 T()) (28)
and define gy = 2Y/°I'(21/10)C1 /8 ~ 0.173318, q; = 2/1%(w; /wy) ~ 1.53445,
and ry ' = (24v/271/5)qod70. Equation (28), as shown below, describes the time
evolution of the temperature. To obtain the last equations we use the expressions
for ps, pa, B, and for the coefficients A. Note that the characteristic time 7q is
571> 1 times larger than the mean collision time 7.(0).

We will find the solution to these equations as expansions in terms of the
small dissipative parameter & (8/(t) = & - 21/1041/10(¢)):

UZUO+(S'U1+52'U2+”~, a2:a20+5-a21+62-a22+~-- (29)

Substituting Eqs. 29), 24) and 25) into Eqs. (26), [27), one can solve these
equations perturbatively for each order of §.

Keeping only linear terms with respect to J, one can find the analytical
solution (see [I7] for details). This reads e.g. for the coefficient as(¢):

12
Cbg(t) = (5'&21 = ——

=w(t)" {Li[w(t)] - Li[w(0)]} (30)

where w(t) = exp [(qoé)_l (1+ t/To)l/ﬁ} and Li(x) is the logarithmic integral.
For t « 79 Eq.(B0) reduces to

as(t) = —3-h (1 — 8 15Tc<0>) (31)

where h = 2119 (Byg — 5A10) /167 = 0.415964. As it follows from Eq.(BI), after
a transient time of the order of few collisions per particle, i.e. for 7.(0) < t < 7o,
as(t) saturates at the “steady-state” (on the time-scale ~ 7.(0)) value —hd =
—0.4159640. For t > 7¢ it decays on a “slow” time-scale ~ Tq:

as(t) ~= =6 h(t/m)"/° (32)

and the velocity distribution tends to the Maxwellian. Linear theory gives for
the temperature for t > 7o [17]

T(t) N\ /12 £\ /e
(14t Zhto -
T < +TO> +{ggh+2a ) (- (33)
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with the constants h and ¢; given above. The linear theory agrees fairly well
with numerical solution (see Fig. [l where the time dependence of ay is given)
for small 9.

1000
aZ[X ]

10°

Time

Fig.1. Time dependence of the second coefficient of the Sonine polynomial ex-
pansion az(t) x 100. Time is given in units of the mean collision time 7.(0). § =
0.1,0.11,0.12,...,0.20 (bottom to top).

For larger values of § the linear theory breaks down and we performed only
numerical study of the equations. The results are given in Figl2l As compared
to the case of small §, an additional intermediate regime in the time-evolution
of the velocity distribution is observed. The first “fast” stage of evolution takes
place, as before, on the time scale of few collisions per particle, where maximal
deviation from the Maxwellian distribution is achieved (FigB). For § > 0.15
these maximal values of as are positive. Then, on the second stage (intermediate
regime), which continues 10 — 100 collisions, ay changes its sign and reaches a
maximal negative deviation. Finally, on the third, slow stage, as(t) relaxes to
zero on the slow time-scale ~ 79, just as for small §. In Fig[2 (left) we show the
first stage of the time evolution of ay(t) for systems with large 6. At a certain
value of the dissipative parameter J the behavior changes qualitatively, i.e. the
system then reveals another time scale as discussed above.
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Fig.2. The Sonine coefficient as(t) for larger dissipation § (numerical results).
Time is given in units of mean collisional time 7.(0). Left: az(t) x 100 for § =
0.1,0.11,0.12,...,0.20 (bottom to top). Right: The plot of a2(¢) x 100 for § = 0.16
over logarithmic time shows all stages of evolution discussed in the text.

5 The Age of a Granular Gas

Assume that the distribution function at time of initialization of a granular
gas is known to be Maxwellian, e.g. from the nature of the physical process
which gave rise to the granular gas. Then the calculation in the previous section
describes the evolution of the velocity distribution function quantified by the
first non-trivial Sonine coefficient as. We have seen that this quantity evolves
characteristically in time. Assume we know an experimental method to measure
the velocity distribution over a certain time interval (¢1,t2) and, therefore, to
trace the time evolution of as in this interval. The time dependence of as is
known theoretically (at least numerically) as the solution of the set of differential
equations (2627), which depends on the parameters 7y and 4, i.e. az = as(¢, 79, 9)
(10 and 6, in their turn, depend on the material parameters p and A). This
suggests a method to measure the age of a granular gas, i.e., to determine the
time of its initialization.

Let us explain this in more detail. If we know as(t), t1 < t < ty we can
compute the values of 79 and §, which completely parameterize the dependence
as(t), with an accuracy, which depends on the size of the time interval to — ;.
Hence, using the solution (either numerical or analytical) of the set of equations
(26I27) we can trace back the dependence as(t) for times ¢ < t1. The time ¢y when
the curve as(t) cuts the abscissa corresponds to the Maxwellian distribution, i.e.,
it gives the initialization time and, therefore, the age of the gas. In Fig. 2 (right)

we see that for larger dissipation there are two such times when as (tél)) =

as (téQ)) =0(0= tél) < t(()2) ) but only the earlier one, tél), corresponds to the
age (see Fig. B)). Thus, we need a method to discriminate between them: If as(t)
was positive for at least a part of the time interval (¢1, t2), then the initialization
time tg is uniquely determined (Fig.Bh). If the value of ay was negative (Fig.Bb,c)
we can trace time-backwards the dependence as(t) until at time ¢y the condition
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as(to) = 0 is fulfilled. Then additional analysis is required: The value of § which
was already computed determines the “steady-state” value of as which is reached
after the quick relaxation in a time of the order of few mean-collision times. For
small dissipation ¢ it is negative and for large dissipation it is positive. Thus, if
the steady state value of ay is negative, the time tg with as(tp) = 0 corresponds

to the initialization time, i.e. tg = t(()l). Otherwise (i.e. for positive steady-state

as), to corresponds to téz) > 0, and one has to trace as(t) further time-backward
in order to find the next time ty which fulfills as(tg) = 0 to find the time of
initialization.

a,(t)
a,(t)

log(t) log(t)

a,(t)

log(t)

Fig. 3. Illustration of the method to compute the age of the granular gas: If the velocity
distribution and, hence, a2(t) can be measured in the interval (¢1,t2), the function
az2(t) can be traced backwards in time due to the described theory. If as(t) > 0 for
t1 < t < t2 (Figure (a)), the condition as(to) = 0 yields the age of the gas. If a2(t) < 0
for t1 < t < t2 depending on material properties there may be one time a2(to) = 0
(Figure (b)) or two times for which a2 (tél)) = ag(téQ)) = 0 (Figure (c)). To discriminate
the cases (b) and (c) one needs further consideration (see text).

If the age of the gas has been measured according to the described method
one can also calculate the initial temperature Tp, i.e. the initial energy of the gas.
From ¢ and T according to the definition of  one can estimate the combination
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of the material parameters Aa?/®, and even the size of the particles o using
Eq.([28), which relates 79, Tp, 6 and 02ge(0), provided the number density n
may be measured.

Assume an astrophysical catastrophic impact took place at a certain time
and produced a granular gas cloud with Maxwellian velocity distribution. If one
would be able to measure the velocity distribution function in a much later
time interval t; < t < ty following the described procedure one would be able
to determine (i) the time when the impact took place, (ii) the energy of the
impacting bodies (from the initial temperature), (iii) some material properties
of the bodies and (iv) the grain size of the granular gas. The described analysis
does not require the knowledge of the material properties of the particles.

6 Conclusion

We analyzed the time evolution of the velocity distribution function in a granular
gas of viscoelastic particles in the homogeneous cooling state. The assumption of
viscoelasticity is the simplest assumption for the dissipative collision of particles
which is in agreement with mechanical laws. The collision of these particles is
characterized by an impact-velocity dependent restitution coefficient.

For the case of a gas of particles which interact via a constant restitution
coefficient its evolution is completely determined by the time dependence of the
temperature. The velocity distribution function has a simple scaling form, i.e.,
it depends only on the reduced velocity of the particles, ¢ = v/vy(t), which is
just the velocity measured in units of the characteristic velocity vo(t), related to
the current temperature. The scaling form, thus, persists with time.

Contrary, the velocity distribution function of a gas of viscoelastic particles
does not have a simple scaling form. The deviation of the velocity distribution
from the Maxwellian which is for the case ¢ = const. a function of € only, i.e. time-
independent, depends for a gas of viscoelastic particles explicitely on time, i.e.
the velocity distribution function undergoes a time evolution. We quantify the
deviation from the Maxwellian distribution by means of the first non-vanishing
term of the Sonine polynomials expansion, characterized by the coefficient as. We
assume that inelasticity of the particles is small and, hence, higher order terms
may be neglected. Contrary to the case of the constant restitution coefficient,
where ao = const., for a gas of viscoelastic particles as reveals a rather complex
time behavior with different regimes of evolution.

The time dependence of the distribution function, quantified by as(t), ex-
hibits different stages of evolution, which allows to assign a Granular Gas the
term “aging”. The explicite time dependence implies that the process has a def-
inite starting point of initialization, i.e. earlier times do not correspond to a
physically meaningful state of the system. At first glance it might appear cum-
bersome that a granular gas, i.e. a cooling gas of dissipatively colliding particles,
has a well defined initialization time. Indeed, if the temperature was the only
characteristics of the system there would be no reason to mention some specific
initial temperature, since the gas may exist at any temperature. In this case we
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would not be able to conclude whether the present state of a gas is the starting
point of its evolution or an intermediate one, so that its history started long ago
at much higher temperature. This is the case if the particles interact via a con-
stant restitution coefficient € = const. For gases of viscoelastic particles, however,
the velocity distribution evolves in a way which allows to determine univocally
the time-lag from the starting point and, hence, the age of the granular gas.

From the knowledge of the velocity distribution in a certain time interval
t1 <t <ty we can determine not only the age of the gas but also its initial
temperature and certain material properties of the particles. This result may be
useful to determine the time, the energy and other system properties of catas-
trophic impacts in astrophysical systems.
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