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We develop an analytical theory of adhesive interaction of viscoelastic spheres in quasistatic approxima-
tion. Deformations and deformation rates are assumed to be small, which allows for the application of
the Hertz contact theory, modified to account for viscoelastic forces. The adhesion interactions are de-
scribed by the Johnson, Kendall, and Roberts theory. Using the quasistatic approximation we derive the
total force between the bodies which is not sufficiently described by the superposition of elastic, viscous
and adhesive contributions, but instead an additional cross-term appears, which depends on the elastic,
viscous and adhesive parameters of the material. Using the derived theory we estimate the contribution
of adhesive forces to the normal coefficient of restitution and derive a criterion for the validity of the
viscoelastic collision model.

1 INTRODUCTION

Numerous phenomena observed in granular sys-
tems, ranging from sand and powders to granular
gases in planetary rings or protoplanetary discs,
are direct consequences of the specific particle
interactions. Besides elastic forces, common for
molecular or atomic materials (solids, liquids, and
gases), colliding granular particles exert also dissi-
pative forces. These forces acting between contact-
ing grains give rise to unusual properties of granu-
lar matter. Hence, the use of an appropriate model
of the dissipative interactions is necessary for the
adequate description of granular systems. In real
granular systems the particles may have a compli-
cated non-spherical shape, differ in size, mass and
material properties. In what follows, however, we
assume that granular particles are smooth spheres
of the same material. We also assume that particles
interact exclusively via pairwise mechanical con-
tact.

There are three different types of forces act-
ing between contacting particles: (i) repelling
elastic forces, due to the compression of parti-
cles, (ii) attractive adhesive forces which appear
when particles share a common surface and (iii)
dissipative forces, acting against the relative
motion of the particles. The dependence on the
material parameters and on the quantities which
characterize the relative position and motion
of particles is known for all of these forces,
e.g. (Brilliantov and Pöschel 2004a). The total
force acting between the particles is, however,
not just the sum of the above three compo-
nents. Instead, a more careful analysis, sketched
below, reveals that the total force contains an
additional cross-term which depends on both
dissipative and adhesive parameters. Using the
obtained expression for the total force acting
between adhesive viscoelastic spheres, we es-
timate the effect of the adhesive force on the
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coefficient of restitution and analyze the range
of validity of the frequently used viscoelas-
tic interaction model (Brilliantov et al. 1996;
Brilliantov and Pöschel 2004b).

2 FORCES OF GRANULAR PARTICLES
Elastic force. Consider a static contact of two
spheres of radiiR1 andR2. When the spheres are
squeezed, the material in the bulk is deformed (Fig.
1). The displacement field~u (~r ) causes the defor-

Figure 1. Collision of spheres, characterized by the time de-
pendent compressionξ(t) ≡ R1 + R2 − |~r1(t)− ~r2(t)| and
its rateξ̇(t) = v1(t)− v2(t).

mation field

uij(~r ) =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

, i, j = {x, y, z} .

(1)
In the elastic regimeuij(~r ) is proportional to the
stress tensorσij(~r ), which gives thei-component
of the force, acting on a unit surface normal to the
directionj (Landau and Lifshitz 1965):

σij(~r )=E1

(

uij(~r )− 1

3
δijull(~r )

)

+ E2δijull(~r ) .

(2)
Repeated indices imply summation and the elas-
tic coefficientsE1 andE2 are related to the Young
modulusY and the Poisson ratioν by

E1 =
Y

(1 + ν)
, E2 =

Y

3(1− 2ν)
. (3)

The contact problem for elastic spheres has been
solved by Hertz (1882): the circular contact of ra-
diusa gives rise to the elastic force, which read in

terms of the compressionξ ≡ R1 + R2 − |~r1 − ~r2|,

a2 = Reff ξ , FH =

√
Reff

D
ξ3/2 (4)

where

Reff ≡
R1R2

R1 + R2

, D ≡ 3

2

(1− ν2)

Y
. (5)

The normal pressurePH(x, y) ≡ σzz(x, y, z = 0),
which acts between the compressed bodies in the
plane of contactz = 0 reads (Hertz 1882)

PH(x, y) =
3FH

2πab

√

1− x2

a2
− y2

b2
. (6)

Adhesive force.The Hertz theory for the elas-
tic contact of spheres was extended to adhesive
contact by Johnson, Kendall, and Roberts (JKR)
(1971). They found that the contact area is en-
larged owing to the adhesive force and, thus, in-
troduced an effective Hertz loadFH which would
cause this enlarged area. The contact area of ra-
diusa corresponds then to the compressionξH for
the Hertz loadFH . In reality, however, this contact
radius occurs at the compressionξ < ξH . The dif-
ference between the Hertz compressionξH and the
actual one,ξ, was attributed to the additional stress

PB(x, y) ≡ FB

2πa2

(

1− x2

a2
− y2

a2

)

−1/2

, (7)

which is the solution of the classical Boussinesq
problem (Timoshenko 1970): This distribution of
the normal surface traction gives rise to a constant
displacement over a circular region of an elastic
body. The displacementξB corresponding to the
contact radiusa and the total loadFB are related
by

ξB =
2DFB

3a
, D ≡ 3

2

(1− ν2)

Y
. (8)

The quantityFB stands for the additional attractive
adhesive force, which acts againstFH . In the JKR
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theory it is expressed by the adhesion coefficientγ,
which is twice the surface free energy per unit area
of a solid in vacuum:

FB = 2πa2

√

3γ

2πDa
. (9)

Thus, the total forceF = FH − FB and the actual
compression,ξ = ξH − ξB, read

ξ(a) =
a2

Reff
−
√

8πγDa

3
(10)

F (a) =
a3

DReff
−
√

6πγ

D
a3/2 , (11)

implying a finite contact radius forF = 0:

a3
0 = 6πDγR2

eff . (12)

For decreasing force (F < 0) the contact radius de-
creases until the minimal value

a3
sep=

1

4
a3

0 (13)

corresponding to maximal (in absolute value) neg-
ative force. At this point the particles separate.

Viscous force. If the deformation of contacting
spheres changes with time, an additional dissi-
pative force arises and the stress tensor con-
tains an additional dissipative componentσij

dis.
For small deformation rateu̇ij(~r ) it reads
(Landau and Lifshitz 1965),

σij
dis(t) = η1

[

u̇ij(t)−
1

3
δiju̇ll(t)

]

+ η2δiju̇ll(t) ,

(14)
whereη1 andη2 are the viscous constants.

If the impact velocity of the colliding bodies is
much smaller than the speed of sound in the par-
ticle material and if the characteristic relaxation
time of the viscous processes in the bulk of the
material is much smaller than the duration of the
collision, one can apply thequasistaticapprox-
imation (Brilliantov et al. 1996). In this approxi-
mation the displacement field~u(~r ) coincides with

that for the static case~uel(~r ), which is the solu-
tion of the corresponding elastic problem. The field
~uel(~r ) in its turn is completely determined by the
time-dependent compressionξ, i.e.,~uel = ~uel(~r, ξ)
(Brilliantov et al. 1996). Relatingξ anda via Eq.
(10) and neglecting a small hysteresis in the very
beginning of the contact (Smith et al. 1989), we
obtain for adhesive interaction

~̇u(~r, t) ≃ ξ̇
∂

∂ξ
~uel(~r, ξ) = ȧ

∂

∂a
~uel (~r, ξ(a)) . (15)

The dissipative stress tensor reads, respectively

σij
dis = ȧ

∂

∂a

[

η1

(

uel
ij −

1

3
δiju

el
ll

)

+ η2δiju
el
ll

]

.

(16)
From Eqs. (16) and (2) follows the relation be-
tween the elastic and dissipative stress tensors in
quasistatic approximation (Brilliantov 2005),

σij
dis = ȧ

∂

∂a
σij

el (E1 ↔ η1,E2 ↔ η2) , (17)

meaning that the dissipative tensor is obtained
from the corresponding elastic tensor by substitut-
ing the elastic constants by the viscous constants
and applying the operatorȧ∂/∂a. In particular the
normal component of the stress tensor at the plane
z = 0 for an adhesive contact reads

σzz
el (x, y, z = 0) = PH(x, y)− PB(x, y) , (18)

with PH(x, y) andPB(x, y) given by Eqs. (6,7,9).
From Eqs. (17,18) we find the dissipative stress

at the contact plane and, integrating it over the con-
tact area, the dissipative force. Referring for detail
to (Brilliantov 2005), we present here the final re-
sult:

Fdis = ȧ

(

A
3a2

DReff
+

3

2
B

√

6πγ

D

√
a

)

(19)

A ≡ 1

3

(3η2 − η1)
2

(3η2 + 2η1)

[

(1− ν2) (1− 2ν)

Y ν2

]

(20)

B ≡ −(3η2 − η1)(1 + ν)(1− 2ν)

3Y ν
. (21)
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The first term in the rhs of Eq. (19) corresponds
to the dissipative force in the absence of adhesion.
The second term is the corresponding cross-term,
which depends on both adhesive and dissipative
parameters.

Remind that the above relations for the dis-
sipative force have been obtained within the
simple JKR theory, which is quite accurate in
the range of parameters of practical interest
(Attard and Parker 1992).

3 COEFFICIENT OF RESTITUTION
An important characteristic of rarefied systems
(granular gases (Brilliantov and Pöschel 2004b))
is the coefficient of restitution, which quantifies
the loss of mechanical energy for pairwise colli-
sions. It relates the pre-collision relative velocity,
g ≡ v1 − v2, to that after the collision,g′ = v′

1 − v′

2:

ε(g) ≡ −g′/g . (22)

The coefficient of restitution may be evaluated
solving the two-body collision problem with given
interaction forces, yieldingg′ as a function ofg.

For small velocities, when the kinetic energy of
the relative motion of colliding particles is close
to the surface energy of the contact, the adhesive
forces may change the coefficient of restitution
qualitatively. Indeed, adhesive particles may stay
compressed in contact even if the external load
vanishes. That is, a tensile force must be applied
to separate the particles. The work against this ten-
sile force at the very end of the collision reduces
the kinetic energy of the relative motion after the
impact, that is, it reduces the coefficient of restitu-
tion. For small impact velocity the kinetic energy
of the relative motion may be too small to over-
come the attractive barrier, i.e., the particles stick
together after the collision corresponding toε = 0.

Consider first a pure viscoelastic collision with
the impact velocityg and coefficient of restitution
εv. Using the definition (22), the energy balance
reads

1

2
meffg2 − 1

2
meffε2

v(g)g2 = Wdis . (23)

where
meff ≡ m1m2

m1 + m2
. (24)

The work Wdis results from the dissipative
force Eq. (19) with γ = 0. The correspond-
ing coefficient of restitution εv is analyti-
cally known (Schwager and Pöschel 1998;
Ramı́rez et al. 1999). Turn now to viscoelastic
impacts with adhesion, characterized by the
coefficient of restitutionεad. The energy balance
reads

1

2
meffg2−1

2
meffε2

ad(g)g2=Wdis A+Wdis B+Wad,

(25)
whereWdis A is the work of the dissipative force
Fdis due to the first term in Eq. (19) andWdis B

is the work due to the second term. Finally,Wad

is the work due to adhesion, i.e., it results from
the adhesive force in the region where the total
force Eq. (11) is negative, that is, in the region
where the contact radius varies froma0 to asep

(Brilliantov and Pöschel 2004a):

−Wad =

∫ ξ(asep)

ξ(a0)

F (ξ)dξ =

∫ asep

a0

F (a)
dξ

da
da .

(26)
Using the approximationWdis A ≈ Wdis from Eqs.
(23,25) we obtain the coefficient of restitution for
viscoelastic collisions with adhesion:

ε2
ad(g) = ε2

v(g)− 2(Wad+ Wdis B)

meffg2
. (27)

Wad may be found employing Eq. (11) for the total
force F (a), Eq. (10) for the compression, which
allows to obtaindξ/da, and Eqs. (12,13) fora0 and
asep:

Wad = q0

(

π5γ5D2R4
eff

)1/3
, (28)

with the analytically known pure numberq0 ≃
0.578 (Brilliantov and Pöschel 2004a). For small
dissipation and small adhesion,Wdis B may be
roughly estimated as (Brilliantov 2005):

Wdis B = q1Bγ1/2D−1/5g8/5
(

meffR2
eff

)3/10
, (29)
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whereq1 ≈ 7.93.
From Eq. (27) we obtain the condition for the

validity of the viscoelastic collision model:

g2 ≫ 2

meff
(Wad+ Wdis B) , (30)

which with Eqs. (28,29) may be written as

g2 ≫ g2
c =

(

γ5D2R4
eff

)1/3
/meff (31)

B ≪
(

D2/γR2
eff

)1/6 (
meff

)1/2
. (32)

With the above condition forB one can neglect
Wdis B as compared toWad for the impact veloc-
ity g being of the order ofgc (g ∼ gc). Then we
obtain respectively the condition for sticking colli-
sion whenεad(gst) = 0:

1

2
meffε2

v(gst)g
2
st = Wad. (33)

Hence, ifg < gst for head-on collisions (vanishing
tangential component of the impact velocity), the
colliding particles stick together and form a joint
particle of massm1 + m2.

4 CONCLUSION
The collision of adhesive viscoelastic spheres is
characterized by (i) the elastic Hertz force, (ii) the
dissipative force originating from viscoelastic bulk
deformation, and (iii) the adhesive force. We use
the continuum model of adhesive contact by John-
son, Kendall, and Roberts (1971) which is ade-
quate in the range of parameters of practical inter-
est. The total force was derived under the approx-
imation of quasistatic deformation, that is, the im-
pact velocity is assumed to be much smaller than
the speed of sound in the material and the viscous
relaxation time is much smaller than the duration
of the collision. This force is not only the superpo-
sition of its three components (i-iii), but there ap-
pears an additional cross-term, which depends on
both viscous and adhesive parameters of the mate-
rial.

Using this force we estimated the contribution of
adhesive forces to the normal coefficient of resti-
tution as well as the range of validity of the vis-
coelastic collision model (Brilliantov et al. 1996)
and the condition for sticking impact of head-on
collisions.
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