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Abstract. A method for the discrete particle simulation of of almost rigid, sharply
edged frictional particles, such as railway ballast is proposed. In difference to
Molecular Dynamics algorithms, the method does not require knowledge about the
deformation-force law of the material. Moreover, the method does not suffer from
numerical instability which is encountered in MD simulations of very stiff particles.

1 Introduction

Traditionally, the subgrade of railway tracks is modeled using continuum me-
chanics. These methods have been proven to yield reliable results in many
applications and have been developed to standard methods. In certain appli-
cations, however, continuum models fail in describing the mechanical proper-
ties of the subgrade. This is the case when the ballast must not be considered
as a continuous medium, but when the granularity of the material is impor-
tant. Typical processes which cannot be sufficiently explained by continuum
models are sedimentation of the ballast due to recurrent load, abrasion of
the ballast particles which leads to less efficient damping properties and the
formation of force chains inside the ballast material.

In the past decade mainly by physicists much work has been done in the
field of Molecular Dynamics of granular material, i.e., the numerical sim-
ulation of granular material as many-particle systems. This technique was
applied to many interesting systems and has contributed to the explana-
tion of several exciting and technologically important effects, such as mix-
ing and demixing of granular materials, avalanche statistics on sand heaps,
milling processes, convection dynamics in shaken granular materials and oth-
ers. Many examples of such simulations can be found, e.g., in [1].

The idea of Molecular Dynamics is to simulate the granular material as a
many particle system and to determine the dynamics of the system by numer-
ical integration of Newton’s equation of motion for each of the N particles:

r̈i =F i/mi

φ̈i =Ĵ−1
i M i ,

(1)

where ri and φi are the position and the orientation of the i-th particle of
mass mi and moment of inertia Ĵi while F i and M i are the force and the
torque acting on this grain. In three dimensions Eqs. (1) establish a set of
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6N coupled non-linear differential equations which have to be numerically
integrated. The force F i consists of gravity and of the interaction force of
the particle i with other particles j

F i = mig +
∑

j

F ij , (2)

where g is the gravitational acceleration. Granular particles interact with
each other only if they are in mechanical contact. For spheres of radii Ri and
Rj we write

F ij =

{

FN
ij nij + FT t if |ri − rj | < Ri + Rj

0 else ,
(3)

where FN and FT are the components of the force in normal and tangential
direction with respect to the inter-center vector ri − rj and n and t are
the corresponding unit vectors. There exist several models for the interaction

forces in normal and tangential direction F
N/T
ij (ri, rj , ṙi, ṙj) (see, e.g. [2])

which shall not be discussed in detail here.

2 Molecular Dynamics fails for the simulation of

railway ballast

There are many examples where granular systems have been simulated by
Molecular Dynamics, however, except for few examples, realistic simulations
have been achieved only for systems where the dynamical behavior of the
grains dominates the system properties. When the static properties of the
particle system become important, i.e., when the relative velocities are small
or zero, the details of the interaction force become essential for understanding
the system behavior. We are faced with two major problems:

• The interaction force of contacting particles must be known as a function
of the particle positions and velocities. In the case of sharply edged grains
such as railway ballast, this function is unknown.

• As soon as the realistic simulation of static properties matters for the sys-
tem behavior, the simulation slows down extremely which implies that
to achieve affordable computation times one has to make simplifying as-
sumptions on the particle contact which are not justified from the point
of view of mechanics and material science.

For these reasons we believe that the described Molecular Dynamics method
is in principle unsuitable for the simulation of railway ballast. Below we list
arguments which support this statement:
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1. Elastic normal force: Whereas the normal elastic force of contacting
spheres is given by the Hertz law

FN,el
ij =

2

3

Y
√

Reff

1 − ν2
ξ
3/2

ij (4)

with Y , ν, and Reff being the Young modulus, the Poisson ratio, and
the effective radius, respectively, this force is not known for more com-
plicatedly shaped particles. For smooth particles (when the local ra-
dius of the contact area is large as compared to the compression ξij ≡
Ri + Rj − |ri − rj |) the function (4) is certainly a good approximation,
for sharply edged particles, however, this function fails. Some authors
assume that the normal force is proportional to what they call “overlap”,
i.e., the volume of the compressed material or (yet more simple) in two
dimensions the “compression length” (for spheres the value ξ) which is
certainly incorrect even for the most simple case of contacting spheres
and the more for more complicatedly shaped grains.

2. Dissipative normal force: The dissipative normal force of contacting
bodies is unknown, in general. For viscoelastically colliding spheres and
other smooth contacting surfaces it is given by

FN,diss

ij = Aξ̇
∂

∂ξ
FN,el . (5)

The prefactor A is a complicated function (for details see [3]) which con-
tains the viscous constants of the material which are unknown in general.
For particles which are not smooth, such as railway ballast, even the func-
tional form of the dissipative force is unknown. The frequently applied
force law FN,diss

ij ∝ ξ̇ is not justified and fails even for spheres.
3. Tangential force: Whereas for smooth bodies the normal force can be

determined from bulk properties of the material, the tangential force is
determined by the bulk and by surface properties. A natural (phenomeno-
logical) assumption is

FT
ij ≤ µFN

ij , (6)

where µ is the Coulomb friction parameter. Unfortunately, this model is
not sufficient for static systems: Assume a (non-spherical) particle which
rests on an inclined plane (angle α). Its normal force is FN = mg cosα
and there is a corresponding tangential force too. To prevent the particle
from sliding along the plane one has to assume an additional force which
mimics static friction, e.g. [2]. This force cannot be derived from material
or surface properties, hence, it is arbitrary. Choices for this function which
can be found in literatures are even in disagreement with basic mechanics.

4. Numerical integration of Newton’s law: Besides the fact that the
numerical integration of the set (1) for a relevant number of particles
N , e.g., N = 1, 000 which establish a quite small system of 10 × 10 ×
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10 particles in three dimensions, requires serious numerical effort, there
are principal problems when applying Molecular Dynamics to a particle
system:

• For very rigid particles the gradient of the force is large and, therefore,
requires a very small integration time step. The more rigid the particle
material the slower progresses the simulation. Assuming a time step
of ∆t = 10−7 sec which is used in many MD simulations of granular
material, one needs 109 integration steps of the equations of motion
(1) to achieve a real time of 100 sec only. Hence, a simulation of long
time behavior using MD seems to be unrealistic.

• The accuracy of the algorithm cannot be increased too much by
reducing the time step. Frequently, predictor-corrector algorithms
are used, which require powers of the time step, (∆t)2 = 10−14,
(∆t)3 = 10−21, etc. (again for ∆t = 10−7). If we ignore the prefactor
of this powers in the integration scheme to obtain a crude estimate,
one has to sum numbers of the orders O(1), O

(

10−7
)

, O
(

10−14
)

,
etc. Double precision numbers have a mantissa of 15 digits, therefore,
one cannot sum numbers which are different by more than 1015. This
limits the minimal value of the integration time step. If one requires
higher precision one needs real numbers in quadruple precision or
higher which implies higher memory consumption and (more impor-
tantly) yet larger computation time since multiplication of two num-
bers in quadruple precision requires approximately quadruple time as
a multiplication of double precision numbers.
We are aware that these numbers are a very crude estimate which
have been given to illustrate the problem. Of course, more sophis-
ticated integration schemes suffer less critical from the addition of
different numbers. In principle, however, the problem persists.

3 Rigid Body Dynamics

In Molecular Dynamics simulations the trajectories of the particles are deter-
mined by numerical integration of Newton’s equations of motion. As discussed
above, this implies the “soft particle assumption”, i.e., the particle deform
under load. Since the particles are very hard but not completely rigid we
encounter serious numerical problems as described above.

The Rigid Body Dynamics originates from the opposite idea: The inter-
action forces are determined from the required behavior of the particles. This
method is, therefore, suited to simulate perfectly rigid particles without the
necessity to specify a certain force-deformation law. We consider the example
of a rigid sphere which rests on a rigid flat surface (see Fig. 1). There is a
point-like contact of the sphere and the surface, hence, there is a contact
force FN in vertical direction. Moreover gravity acts on the sphere causing a
force −mg. If one would chose the contact force FN = 0, the sphere would
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NF

R

y=0

Fig. 1. A rigid sphere resting on a rigid flat surface.

move downwards with an acceleration g, i.e., it would penetrate the surface.
This unphysical behavior has to be avoided by the proper choice of the force
FN due to the following conditions:

1. Contact forces have to be chosen in order to avoid penetration of contact-
ing particles.
For our example FN ≥ mg follows. On the other hand, a force FN > mg
would lead to unphysical behavior since the sphere would move upwards.
This is avoided by the second condition.

2. A contact force vanishes when the contact breaks.
A contact is said to break if the normal component of the relative accel-
eration of the concerned particles, or their normal velocity is larger than
zero. (The relative velocity is counted positive if the particles separate
from each other.)

3. There are no attractive normal forces.
In our example FN > mg causes the contact to break which implies
that the contact force vanishes. Therefore, from these conditions follows
FN = mg. For this choice the total force is zero and the sphere rests
on the plane. The conditions 1.-3. are sufficient to describe any particle
system as long as there are no friction forces. For systems with friction
we need one more condition:

4. Friction forces act in parallel with the contact plane, i.e., perpendicular to
FN . Given the tangential force F ∗ which is necessary to keep two particles
from sliding. Then the acting tangential force is |F | = min

(

|F ∗| ,
∣

∣µFN
∣

∣

)

.
Its sign has to be chosen opposite to the tangential relative acceleration
(or the tangential relative velocity).
In agreement with Coulomb’s friction law the particles slide only if

∣

∣FT
∣

∣ ≥
∣

∣FN
∣

∣. If this condition is fulfilled the friction force adopts its maximal
value ±µFN .

To perform simulations one has to derive the forces of the particles in nor-
mal and tangential directions from these four conditions. The corresponding
algorithm will be explained in sections 5 and 6.

In our simple example (Fig. 1) there exists only one contact between the
sphere and the plane. In more complex situations, e.g. for a resting cube,
there are contacts areas instead of points. These contacts may be always
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reduced to point contacts. It will be shown that the described conditions
are sufficient to determine the forces and torques which act on the particles,
provided there are not too many contacts in the system. If the number of
contacts is too large only the total force and the total torque which act on
a particle may be determined, but not each of the pairwise contact forces.
For the computation of the particle trajectories, however, the total forces and
torques are sufficient. We will return to this issue in Sec. 8.

Rigid Body Dynamics has been intensively studied in the past two decades.
Descriptions of the algorithm can be found in [4,5]. The core of the algorithm
is the numerical computation of the contact forces which is a Linear Com-
plementarity Problem [6,7]. An efficient algorithm for this type of problems
can be found in [8,9,10,11]. Rigid Body Dynamics has also been applied to
granular systems, e.g. [12,13], where frictionless smooth spheres have been
simulated. Systems of granular particles subject to friction have been stud-
ied, e.g., in [14].

Due to our understanding the Rigid Body Dynamics is much better suited
for the simulation of railway ballast for the following reasons:

• Ballast particles are irregularly shaped and sharply edged. Even if the
bulk material properties were precisely known, the contact force law is
unknown due to the complicated shape.

• Ballast particles are very stiff which implies that the gradient of the
interaction force is very steep. In this regime the numerical integration
of Newton’s equation is problematic. For the dynamics of the system
the deformation of single particles is unimportant, i.e., the Rigid Body
assumption is well justified.

• Static friction, whose treatment in MD-simulations is problematic too, is
essential for the dynamics of the system. It is correctly modeled in Rigid
Body Dynamics.

• The long time behavior of railway ballast is affected by abrasion and
fragmentation of particles. Molecular Dynamics of fragmenting particles
may cause artifacts for several reasons which cannot be discussed here in
detail (see [15]). Rigid Body Dynamics is very well suited for this case.

4 Schedule of Rigid Body Simulations

The state of the granular system is described by the position and orientation
of its particles and by the according time derivatives. Contacts between the
particles may be classified as sticking and sliding contacts. In the due of time
the contact network is modified by creation and termination of contacts as
well as by transformation of sticking contacts into sliding ones and vice versa.
Whenever the contact network is modified the state of the system changes
qualitatively. The simulation proceeds in discrete time steps. Each of them
consists of
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1. Contact detection: all existing contacts are registered.
2. Treatment of collisions: A collision takes place if two contacting parti-

cles move with negative normal relative velocity. In this case one cannot
determine a finite contact force which would avoid penetration of the par-
ticles since any force, however large it is, would need a short but finite
path to retard the colliding particles. Hence, mutual penetration would
be unavoidable. Therefore, we need a special treatment for collisions (see
Sec. 7).

3. Formulation of the geometry equations: After a collision, in general,
there is a number of contacts of particles which have a positive normal
relative velocity, i.e., the particles lose contact. These contacts have to be
erased from the list of contacts. The normal components of the relative
velocities at all remaining contacts are zero. We have to establish the
geometry equations which contain the information about the geometry
of the system (see Sec. 5).

4. Computation of the forces: Section 6 deals with the computation of
the relative accelerations by means of the geometry equations.

5. Integration of the equations of motion: Finally we have to inte-
grate the equations of motion for all particles. During this operation it
may be necessary to update the geometry equations and to repeat the
computation of the forces according to the integration scheme used.

5 Mathematical description

For convenience at first we will restrict to frictionless particles. When the
mathematical framework has been developed for this simplified case we will
then introduce friction forces between particles. The rigidity of the particles
is enforced by means of mathematical motion constraints of the form

g(q) ≥ 0 , (7)

where q is a vector containing the positions (center of mass position and
orientation) of all particles of the system. The constraint function g shall be
zero if particles in the system are in contact and larger than zero otherwise.
For spheres, which is the most simple case, the constraint function reads

g(q) = |ri − rj | − Ri − Rj . (8)

If the spheres would deform each other (|ri − rj | < Ri + Rj) the function
g(q) would be negative, if the particles touch each other it would be zero. To
prevent the deformation we require g(q) to be positive or zero, i.e., it has to
fulfill the condition (7). For sharp edged particles, such as particles which are
described by polyhedrons or polygons, the motion constraints are

g(q) = nj (ri + xi − rj) − d , (9)
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where nj is normal of the face of particle j which is in contact with an edge
of the particle i. The vectors ri and rj are the center of mass positions of
the particles, the edge of particle i that is in contact with the particle j is at
position ri + xi. The constant d is the distance of the contacting face of j
from the center of the particle. The left picture in Fig. 2 shows a sketch of a
typical contact of two particles. Face-face contacts can be described by two
face-edge contacts (see Fig. 2).

rj

r i
xi

nj

d

Fig. 2. Left: a face-edge contact. ri and rj are the center of mass positions, xi is
the coordinate of the contacting edge relative to the center of mass of particle i and
nj is the normal of the contacting face of particle j. Right: face-face contacts can
be reduced to two face-edge contacts. The face normals of each of the contacts are
displayed as well.

Every motion constraint corresponds to a scalar contact force f . Accord-
ing to d’Alembert’s principle the direction of the contact force is given by
the spacial derivative of g with respect to all components of the coordinate
vector q, namely ∂g/∂q. The contact force that acts on a certain particle i
is f∂g/∂qi, with qi being the coordinates of particle i. We can formulate the
equation of motion for the particles1

M̂iq̈i = Qi +
∑

α

fα
∂gα

∂qi
(10)

gα(q) ≥ 0 . (11)

M̂i is the mass matrix of the particle i, which has the form

M̂i =









mi 0 0 0
0 mi 0 0
0 0 mi 0

0 0 0 Ĵi









, (12)

1 Particle indices are written in Latin letters, contact indices in Greek letters.
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where Ĵi is the moment of inertia tensor. In two dimensional systems Ĵi is
only a scalar Ji and there are only 2 entries of mi. Qi finally is the external
force (and torque) acting on particle i. This is usually gravitation, but other
external forces can be incorporated at this point as well.

Although we formulated the motion constraints in the form g(q) ≥ 0
to allow separation of particles, contact forces can only act if particles are
actually in contact. Therefore, constraints which are strictly positive, i.e.
g(q) > 0 (the particles are separated), can be disregarded. These constraints
are said to be inactive. The remaining constraints, the active ones, are thus
satisfied by g(q) = 0. Since the g(q) have to remain non-negative their time
derivatives have to be non-negative as well. We therefore have

ġα =
∂gα

∂qk
q̇k ≥ 0 (13)

g̈α =
∂gα

∂qk
q̈k +

∂2gα

∂qk∂ql
q̇k q̇l ≥ 0 . (14)

For simplicity of notation we used the Einstein convention, i.e. summation
over doubly occurring indices k and l is implied. These time derivatives are
the relative velocity and relative acceleration of the particles at their contact
points. It is important to note that ġα and g̈α are not the relative velocity or
acceleration of the centers of mass of the particles but of the points of both
particles which are actually in contact. It can easily happen that the relative
velocity or acceleration of the contact points are positive (the particles are
about to separate) although their centers of mass approach each other.

We insert the equation of motion (10) into (14) and find

g̈α =
∂gα

∂qk



M̂−1

k



Qk +
∑

β

fβ
∂gβ

∂qk







 +
∂2gα

∂qk∂ql
q̇k q̇l

=
∂gα

∂qk

(

M̂−1

k Qk

)

+
∂2gα

∂qk∂ql
q̇k q̇l +

∂gα

∂qk
M̂−1

k





∑

β

fβ
∂gβ

∂qk



 . (15)

The first term on the right hand side describes the action of the external
forces, the second term describes the action of inertial forces as, e.g., cen-
trifugal force and Coriolis force, the third term finally describes the action of
the contact forces. We can rewrite this equation as

g̈α = bα +
∑

β

Aαβfβ , (16)

with Aαβ and bα abbreviating

Aαβ =
∂gα

∂qk
M̂−1

k

∂gβ

∂qk

bα =
∂gα

∂qk

(

M̂−1

k Qk

)

+
∂2gα

∂qk∂ql
q̇k q̇l .

(17)
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From now on we will denote the relative acceleration of the contacting parti-
cles at their contact points – the contact acceleration – as aα instead of g̈α.
Equation (16) turns into

aα = bα + Aαβfβ , (18)

where again summation over β is implied. We will call this equation the ge-
ometry equation. By means of this equation and the consistency conditions
introduced in Sec. 3 we can now determine the contact forces fβ . The con-
sistency conditions read

aα ≥ 0

fα ≥ 0

aαfα = 0 .

(19)

The first condition prevents deformation of particles, the second one excludes
attractive forces and the third one requests that contact forces may only act
if the particles stay in contact, i.e., if aα = 0. These conditions together with
the geometry equation (18) allows to determine the unknown contact forces
fα. The whole system consisting of Eq. (18) and the conditions (19) is called
a Linear Complementarity Problem. It can be solved by Dantzig’s algorithm
[6].

To incorporate friction we introduce additional motion constraints which
shall, if possible, impede a tangential motion of the contacting particles. For
polygonal particles they are of the form

g(q) = tj (ri + xi − rj − xj) . (20)

This constraint has a similar form as the constraint of the normal motion
of the particles (9) but instead of the normal unit vector of the contacting
face of particle j the tangential unit vector tj appears, thus ensuring that the
edge of particle i at position ri + xi does not move along the face of particle
i away from the point rj + xj of initial contact.

These motion constraints are, however, of different nature than the normal
motion constraints. Whereas in the case of the normal motion the constraints
must never be violated, the constraints on the tangential motion may actually
be violated, as it happens when the particles start to slide. This is due to the
fact that the magnitude of the friction forces are limited by µfN , with µ being
the friction constant and fN the corresponding normal force. As reflected by
the consistency condition 4 (ref. Sec. 3) the friction force must adopt its max-
imum value if particles actually slide, i.e. if the tangential motion constraint
is inactive. Thus, in this case the value of the friction force is determined
without need of further consideration. In contrast to the case of normal mo-
tion constraints we may not neglect the inactive constraints because now the
corresponding contact forces are non-zero and thus the constraint has to be
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kept in consideration in order to determine the direction of the tangential
force.

Since friction causes only further motion constraints there is, in principle,
no need of further discussion of the problem. The geometry equation (18) can
describe systems with friction as well. For simplicity of notation it is worth,
however, to consider normal and friction forces and their corresponding mo-
tion constraints separately. We now have 2 classes of motion constraints

gN (q) ≥0

gT (q) =0
(21)

and the corresponding contact forces fN and fT . Now the equation of motion
reads

M̂kq̈k = Qk +
∑

α

(

fN
α

∂gN
α

∂qk
+ fT

α

∂gT
α

∂qk

)

. (22)

For the second time derivative of the motion constraints we obtain

g̈N
α =

∂gN
α

∂qk

(

M̂−1

k Qk

)

+
∂2gN

α

∂qk∂ql
q̇k q̇l +

∂gN
α

∂qk
M̂−1

k





∑

β

fN
β

∂gN
β

∂qk
+ fT

β

∂gT
β

∂qk





g̈T
α =

∂gT
α

∂qk

(

M̂−1

k Qk

)

+
∂2gT

α

∂qk∂ql
q̇k q̇l +

∂gT
α

∂qk
M̂−1

k





∑

β

fN
β

∂gN
β

∂qk
+ fT

β

∂gT
β

∂qk



 .

(23)

Renaming again g̈
{N,T}
α by a

{N,T}
α and using the abbreviations

bN
α =

∂gN
α

∂qk

(

M̂−1

k Qk

)

+
∂2gN

α

∂qk∂ql
q̇k q̇l

bT
α =

∂gT
α

∂qk

(

M̂−1

k Qk

)

+
∂2gT

α

∂qk∂ql
q̇k q̇l

(24)

and

ANN
αβ =

∂gN
α

∂qk
M̂−1

k

∂gN
β

∂qk
ANT

αβ =
∂gN

α

∂qk
M̂−1

k

∂gT
β

∂qk

ATN
αβ =

∂gT
α

∂qk
M̂−1

k

∂gN
β

∂qk
ATT

αβ =
∂gT

α

∂qk
M̂−1

k

∂gT
β

∂qk

(25)

we can write the modified geometry equations

aN
α =bN

α +
∑

β

(

ANN
αβ fN

β + ANT
αβ fT

β

)

aT
α =bT

α +
∑

β

(

ATN
αβ fN

β + ATT
αβ fT

β

)

.
(26)
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The full set of consistency conditions then reads

aN
α ≥0

fN
α ≥0

aN
α fN

α =0
∣

∣fT
α

∣

∣ ≤µfN
α

aT
α

(∣

∣fT
α

∣

∣ − µfN
α

)

=0 .

(27)

Equations (26) together with the conditions (27) can be solved with a modi-
fied Dantzig’s algorithm [10] which will be discussed in the next section. Note
that some of the tangential forces may be directly determined by the respec-
tive normal forces, i.e., when sliding at this contact occurs. The consistency
conditions for these forces have to be fulfilled, nevertheless.

6 Dantzig’s Algorithm

Contacts can be classified into breaking contacts (aN = 0 thus fN = fT =
0), permanent static contacts, (aN = 0 and aT = 0) or permanent sliding
contacts (aN = 0 but aT 6= 0). If we knew à priory into which category
each contact belongs the contact forces could be determined by solving an
inhomogeneous system of linear equations which consists of all equations
for which either aN

α = 0 or aT
α = 0, with the corresponding fN

α and fT
α

as variables. All remaining normal forces are zero, the remaining tangential
forces assume their maximum values. Unfortunately the contact classification
is only known if we know the contact forces as well.

We apply Dantzig’s Algorithm to determine the forces together along with
the corresponding contact classification. It starts with considering a certain
contact, disregarding all others, i.e., their contact forces are set to zero. After
having found a solution for this contact its classification is also known. The
algorithm proceeds then with the next contact. Again the contact forces are
determined preserving the consistency of all contacts considered before. In
this process the contact classifications of the already consistent contacts may
be changed if necessary. The process is repeated until the last contact has
been classified.

All contacts are assigned to one of four lists:

• List NC of breaking contacts
• List CF of permanent static contacts
• List C± of permanent sliding contacts. In list C+ are all contacts where

fT = µfN , in C− all contacts where fT = −µfN .

All contacts in the above lists are considered to be consistent, i.e., they sat-
isfy the consistency conditions. The classification is done successively for all
contacts α by:
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1. Check if the normal force fN
α = 0 satisfies the consistency conditions

aN
α ≥ 0. If this is the case the contact is consistent and belongs to NC.

2. If aN
α < 0 we have to increase the normal contact force fN

α to obtain a
non-negative normal acceleration. However, increasing the normal force
fN

α will change the contact accelerations of the already classified contacts
as well. Since for the permanent contacts β we need aN

β = 0 (and for the

static contacts also aT
β = 0) this would invalidate the classification of

these contacts. To preserve the consistency of the classified contacts we
will have to change the contact forces of the the permanent contacts
as well. We now have to determine how much we have to change these
contact forces for a given increase s of the new force fN

α to keep aN
β = 0

and, if necessary aT
β = 0. To calculate the necessary changes we formulate

a reduced set of geometry equations:

0 = aN
β =bN

β + ANN,red
βγ fN

γ + ANT,red
βγ fT

γ + ANN
βα fN

α

0 = aT
β =bT

β + ATN,red
βγ fN

γ + ATT,red
βγ fT

γ + ATN
βα fN

α .
(28)

The reduced set of geometry equations can be obtained from the original
geometry equations (26) disregarding all breaking contacts and replacing
fT

β = ±µfN
β for all contacts β from C± (sliding contacts). Since only

permanent contacts remain all contact accelerations in the reduced ge-
ometry equations are thus zero. If we now change the new contact force

fN
α → fN

α +s we have to vary the previously known contact forces f
{N,T}
β

in the reduced geometry equations by an unknown amount ∆f
{N,T}
β in

order to keep the contact accelerations at their required value of zero:

0 =bN
β + ANN,red

βγ

(

fN
γ + ∆fN

γ

)

+ ANT,red
βγ

(

fT
γ + ∆fT

γ

)

+ ANN
βα

(

fN
α + s

)

0 =bT
β + ATN,red

βγ

(

fN
γ + ∆fN

γ

)

+ ATT,red
βγ

(

fT
γ + ∆fT

γ

)

+ ATN
βα

(

fN
α + s

)

.

(29)

Inserting Eq. (28) we find

0 =ANN,red
βγ ∆fN

γ + ANT,red
βγ ∆fT

γ + ANN
βα s

0 =ATN,red
βγ ∆fN

γ + ATT,red
βγ ∆fT

γ + ATN
βα s .

(30)

This is linear system of equations for the unknown ∆f
{N,T}
γ with the

step size s being a parameter. The necessary variations ∆f
{N,T}
γ are

proportional to the step size s, hence the solution is of the form

∆f{N,T}
γ = F {N,T}

γ s , (31)

where F
{N,T}
γ is the necessary variation if s = 1. By inserting the changed

values back into the original geometry equations we now know as well by
how much the accelerations of the breaking and sliding contacts change.
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3. We increase the value of the new force fN
α until either the acceleration

aN
α = 0 (the contact is now consistent) or until the classification of any

already consistent contact changes. The classification changes if either
(a) a normal acceleration aN

β > 0 becomes zero: The contact becomes per-

manent and has to be moved from NC to either CF or C± according
to its present value of the corresponding tangential acceleration.

(b) a normal force fN
β > 0 (permanent contact) becomes zero: the contact

is now a breaking contact and has to be moved from CF or C± to
NC.

(c) a tangential acceleration aT
β 6= 0 becomes zero and the corresponding

tangential velocity is zero: the contact now is static and has to be
moved from C± to CF .

(d) a friction force previously of smaller magnitude than its allowed max-
imum reaches the maximum value ±µfN

β : the contact becomes sliding

and has to be moved from CF to C±.
4. if we have not yet found consistent values for aN

α and fN
α we have to

proceed with step 2.

If the contact α is permanent we have to consider the tangential compo-
nent aT

α of contact α too. The procedure is very similar to the calculation
of aN

α . The only difference is that if aT
α > 0 we have to decrease the friction

force until it assumes its negative maximum value and if aT
α < 0 we have to

increase the friction until it adopts its positive maximum value.

7 Collisions

In the framework of Rigid Body Dynamics collisions occur if two contacting
particles have a negative normal relative velocity at their contact point. We
can easily convince ourselves that no finite contact force can prevent a de-
formation of the particles. No matter how large the force is, it will always
take a finite, however small, time to stop the approaching particles, hence
they will deform each other. Thus, to prevent deformation of the particles an
infinite repulsive force of infinitesimal duration is necessary. It turns out that
the total momentum transfer ∆p between the two particles is finite2:

∆p = lim
tc→0

tc
∫

0

fdt = finite . (32)

Resolving multi-particle collisions it turns out that the resulting state of the
particles after the collision is not unique. This is due to the infinite stiffness

2 Note that the duration tc of the collision is only formally the parameter of the
limit in the equation above. This limit is actually achieved by starting with
deformable particles and increasing their stiffness to infinity. In this limiting
process the duration of collision approaches zero.
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of the particles, or equivalently, the infinite speed of sound in the particle
material. In the limit of infinite speed of sound all information on the exact
collision mechanism, e.g., the sequence of individual pair collisions, is lost,
since any of the collisions is of vanishing duration. Colliding particles of finite
stiffness do not exhibit this feature, since here all processes take finite time.

According to these arguments the necessary information on the detailed
collision mechanism is not accessible. The following set of assumptions turned
out to yield realistic results, although they cannot be uniquely derived:

1. All individual pair collisions occur at once.
2. The transfer of momentum at contact points is finite. There is no mo-

mentum transfer which corresponds to attractive forces.
3. The relative velocity after a collision can never be smaller than −ǫv,

where ǫ is the coefficient of restitution and v is the impact velocity at
that contact (v < 0 !).

4. If the velocity after the collision is strictly larger than −ǫv there is no
momentum transfer at this contact.

The first two assumptions have been introduced already. The remaining two
assumptions deserve further discussion. Two-particle collisions can be de-
scribed by means of the coefficient of restitution which relates the precolli-
sional relative velocity v and the final velocity v′ after the collision:

v′ = −ǫv . (33)

In the case of multi-particle collisions, however, two particles which initially
rest relatively to each other may separate after a collision. Therefore, the
final velocity may indeed be larger than the value −ǫv. Contrary it may no
happen that two particle which collide with a finite impact velocity are at
rest relative to each other afterwards. Therefore, v′ ≥ −ǫv.

The fourth assumption simply means, that if two particles separate from
each other with higher velocity than −ǫv their aftercollisional velocity may
not be increased further by an additional momentum transfer.

For convenience we define the excess velocity ∆v

∆v = v′ + ǫv , (34)

which is zero if v′ = −ǫv. The source of any velocity change is a momentum
transfer between the colliding particles. We can relate the excess velocities
at the contacts with the momentum transfers by means of the collisional
geometry equation, which is derived in a similar way as the geometry equation
of the force algorithm:

∆vα = (1 + ǫ) vα + Acol
αβ∆pβ . (35)

Note that the vα are relative velocities of the contact points of two contacting
particles, but not the velocities of the particles themselves. In mathematical
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terms the above discussed assumptions read

∆vα ≥ 0

∆pα ≥ 0

∆vα∆pα = 0 .

(36)

The first condition prevents the final velocity from being smaller than −ǫv.
The second condition excludes attractive interaction between particles. Fi-
nally, the third condition means that there may be a finite momentum transfer
only if ∆v = 0. These conditions together with the geometry equation (35)
form a Linear Complementarity Problem which is already familiar from Sec.
6 and can be solved by Dantzig’s Algorithm.

8 Resolution of static indeterminacy

If the number of contacts in the system is too large, the contact forces cannot
be uniquely determined by the force algorithm. This occurs, if the number of
free variables in the system, i.e. the number of contact forces, is larger than
the number of mechanical degrees of freedom, 3N in 2d or 6N in 3d, with N
being the number of particles. However, the total forces and torques acting on
the particles and, hence, their trajectories are unique. This drawback restricts
the applicability of Rigid Body Dynamics for the simulation of railway ballast,
since this system is of mainly static nature, the exact knowledge of the contact
forces is crucial for understanding its behavior.

So far we have considered the contact forces as independent of each other.
This assumption is the reason for the force indeterminacy. In realistic systems,
however, the forces are not independent (Fig. 3). If we apply an external force
directed to the right on the central particle, we increase the contact force with
the particle to its right while at the same time decreasing the contact force
with the particle to its left. In this example both contact forces in reality
depend on a single parameter, which is the applied external force.

Fig. 3. The central particle is in contact with two other particles. The contact
forces on both contacts are not independent of each other.



Rigid body dynamics of railway ballast 17

We can mimic this behavior by introducing small displacements of the
particles. Each particle has a set of macroscopic coordinates r and φ and a
set of microscopic coordinates δr and δφ. In analogy to the vector q of all
(macroscopic) coordinates of all particles, we define the vector δq of all mi-
croscopic (infinitesimal) coordinates. The contact network and the kinematic
state of the particles is determined solely by the macroscopic coordinates,
hence they can be considered as the actual coordinates of the particles. The
microscopic coordinates lead to a deformation of contacting particles. By def-
inition they are of infinitesimal size, which allows us to restrict ourselves to
a linear approximation in δq for the computation of the deformations. The
vector ξ of all deformations in the system

ξ = D̂δq (37)

is defined by the deformation matrix D̂ and the microscopic coordinates. The
dependence of D̂ on the geometric properties of the systems is straightforward
but lengthy, therefore we will not give explicit expressions here (for the full
derivation see [15]). We define a force law to relate the deformations at the
contact points with the contact forces:

f = f(ξ) . (38)

Now the contact forces are functions of the displacements δq. To calculate
the forces we use the geometry equation (26) together with the consistency
conditions (27). This set of equations is to be solved for the microscopic
displacements δq. Hence, there are as many variables as degrees of freedom,
i.e., the system is unique.

To determine the microscopic coordinates we use an overdamped relax-
ation method. We start with a set of inconsistent coordinates δq. Inconsistent
means that the consistency conditions for the resulting forces and accelera-
tions are not fulfilled. Now we let the system relax. This way we find new
microscopic coordinates such that ξ′ = ξ − ha, with h being the step size
and a the vector of all contact accelerations. If the contact acceleration is
negative the displacement will be larger, yielding a larger force to stop the
approaching motion of the contacting particles. Since the adjustment step for
the displacements is proportional to the acceleration the sequence of micro-
scopic coordinates of the particles can be understood as overdamped motion.

The adjusted microscopic coordinates are the solution of the linear system
of equations

ξ − ha = D̂δq′ (39)

or, equivalently

D̂ (δq′ − δq) = −ha . (40)
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In cases where there are less degrees of freedom than contact accelerations
the system of equations is overdetermined. There may be vectors ha which
are not representable by any vector δq′ − δq. In this case we have to project
the vector −ha into the image space of the operator D̂ before solving the
system of equations.

We repeat the adjustment of microscopic coordinates until the consistency
conditions are met. To further improve the speed of this method we can save
the microscopic coordinates which yielded a consistent system in the previous
time step. If the system did not change too much this set of microscopic
coordinates is very close to the new solution and we need only few iteration
steps to arrive at the new solution.

This method combines the advantage of Rigid Body Dynamics, namely
the ability to simulate very stiff particles, with the advantage of Molecular
Dynamics, namely uniquely defined contact forces. An additional advantage
of the method of small displacements is that we can now easily simulate cer-
tain degradation mechanisms. If we, for example, want to simulate the effects
of abrasion of edges of the particles we can do this by gradually changing the
force law (38), which describes changing edge properties of the particles.

9 Step size control

The integration scheme used in our implementation is a Runge-Kutta method
of fourth order. During one time step there are four force computations nec-
essary. Since we use discrete time steps we are frequently faced with the
problem that after a given time step some particles do deform each other. In
this case, obviously, the chosen time step was too large. This problem could
be solved by predicting the time of next contact (collision) from the present
state of the particles. Since the particles are subject to forces which vary in
time this prediction cannot be accurate, as we approach a collision we would
have to update it repeatedly. Since this prediction method is quite compli-
cated we chose a simpler method. We advance the system by a certain time
step. When determining the contacts in the next time step (see Sec. 4) we
check for deformations of the particles. If any deformations occur we restore
the state of the system before this time step and take a time step of half its
original value. We then repeat this process, i.e. advance the system by the
new time step and check for deformations. If we again encounter deformations
we again divide the time step by two and repeat the computation until a state
without deformations is reached. The new state of the system is accepted and
the other steps of the algorithm are performed. This procedure ensures that
there will be no particle deformations in the system at the beginning of any
accepted time step.
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Since this method can only decrease the time step, however, we need a
procedure to increase the time step again3 in order to avoid permanently
slowing down the simulation. We can always increase the time step if there
are no collisions in the systems for a certain time. Hence, if we successfully
performed a number of time steps without encountering collisions we can in-
crease the time step again by a factor of two. We cannot increase the time
step after only one successful time step since this may lead to frequently al-
ternating increase and decrease steps. A requirement of three successful time
steps before increasing the time step has shown to yield good computational
efficiency.

With this choice of a step size control method we have completed the
discussion of the simulation algorithm.

10 Conclusions

Although Molecular Dynamics methods have recently been applied success-
fully to the simulation of the dynamics of railway ballast [16] we have doubts
that this technique is suitable to the simulation of almost rigid, sharply edged
particles such as railway ballast, in particular if the system behavior is gov-
erned mainly by static properties of the system. Moreover, it seems to be
unsuitable for the simulation of long time effects such as densification and
wear of ballast.

The Rigid Body Dynamics is a method which is intended to describe the
motion of systems of very stiff particles. In a natural way it avoids the prob-
lems of Molecular Dynamics simulations which have been discussed in detail
in Sec. 2. These problems are unavoidable within the concept of Molecular
Dynamics. Therefore we believe that Rigid Body Dynamics is much better
suited to the simulation of railway ballast than Molecular Dynamics. From
the presentation of the algorithm we have seen that a time step in Rigid
Body Dynamics is a lot more complicated than a time step in Molecular Dy-
namics. Hence the according implementation requires by far more computing
time than an implementation of a Molecular Dynamics code. Fortunately this
disadvantage is offset by the fact that in Rigid Body Dynamics we can chose
a larger time step than in Molecular Dynamics. Whereas in Molecular Dy-
namics the time step is determined by the critical deformation (the length on
which the force changes by one unit) divided by the characteristic velocity in
the system, which usually yields a very small time step (e.g. ∼ 10−7 sec), the
time step in Rigid Body Dynamics is determined by the characteristic time
in which the forces in the system change significantly. The latter quantity is
usually much larger (∼ 10−3 sec). Thus, the computing time requirements
for both methods are comparable when simulating mainly static problems as
it is the case for railway ballast.

3 There is, of course, an upper limit to the time step which is dictated by the
accuracy of the chosen integration scheme.
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An additional advantage of Rigid Body Dynamics is that fracture of par-
ticle can be introduced in a very natural way. When dealing with deformable
particles in MD simulations the fracture of particles can lead to numerical dif-
ficulties. After the fracture of a particle, i.e., when a large particle is replaced
by two or more fragments, there will be a finite time in which the system
has to readjust and to reach a new stable state. There are situations when
the new stable state deviates significantly from the realistic (experimental)
situation. This problem is not encountered in Rigid Body Dynamics. After
a fragmentation (which is algorithmically done by constructing two or more
new polygons from the previous particle simply by introducing another edge
into the old particle and splitting along this line) the system remains always
stable.

It is our firm believe that Rigid Body Dynamics provides a very promising
alternative to Molecular Dynamics for the simulation of railway ballast.
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